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Abstract

The Hamiltonian governing the dynamics in a Linear Paul

Trap (LPT) is identical in form to that of a beam in a fo-

cusing channel. This similarity, together with the LPT’s

flexibility, compactness and low cost, make it a useful tool

for the study of a wide range of accelerator physics topics.

Existing work has focused on high intensity collective ef-

fects as well as, more recently, the study of integer resonance

crossing in the low intensity regime. A natural extension

of this work is to investigate space-charge effects of intense

beams in more realistic lattices to directly inform accelerator

design and development. For this purpose we propose to

construct a modified Paul Trap specifically for these stud-

ies. Among other features, it is envisaged that this new LPT

should be able to model non-linear elements and a wider

range of lattice configurations. This work will be undertaken

in collaboration with Hiroshimi University.

INTRODUCTION

In a linear Paul Trap ions are trapped transervsely by an

oscillating RF field and axially by a static DC field. The

use of such a device to study the transverse dynamics in

a quadrupole channel was first proposed in ref. [1]. The

equivalence between the two cases includes not only the

Hamiltonian but also the Vlasov-Poisson equation [2]. It

follows that the collective processes and transverse dynamics

are identical in the two systems.

A LPT allows the study of beam dynamics in a relatively

cheap and compact device. It also allows more flexibility

in the choice of parameters (e.g. radio-activation by beam

loss does not apply). The time allocated to study accelerator

physics on production machines is normally limited - this is

not an issue in an ion trap.

A wide range of beam dynamics experiments have already

been conducted in LPTs including the study of collective

modes [3, 4], the crossing of parametric resonances [5], the

role of noise in emittance growth and halo production [6, 7],

the adiabatic compression of a bunch [7] and resonance

instability bands in doublet lattices [8].

Experiments to date have been done either on the Paul

Trap Simulator Experiment (PTSX) device at Princeton,

USA or on the Simulator of Particle Orbit Dynamics (S-

POD) series of traps at Hiroshima, Japan. It is proposed to

construct a new trap (or series of traps) at Rutherford Apple-

ton Laboratory, UK. This will be done in close collaboration

with the Hiroshima group.

While there is certainly much more that could be done

using existing traps, it is worth investigating the broader

range of experiments that might be made possible with mod-

ified designs. Here we consider a multipole trap to allow

non-linear lattices to be studied. In the next section the es-

sential formulae that inform the choice of the principal trap

parameters are given. In later sections, collective effects,

halo production, detuning and the flexibility in lattice choice

are covered.

LPT DESIGN

In the original “3D” Paul trap, the RF field is zero at just

a single point at the centre of the device thus limiting the

number of ions that can be cooled. By contrast a “linear”

quadrupole field allows a string of ions to be cooled along

the axis, hence the development of the linear Paul trap (also

called a “linear quadrupole trap”). This device can be gen-

eralised to the “linear multipole trap” (henceforth referred

to as a multipole trap) in which additional electrodes add

non-linear field components [9].

For the case of a linear quadrupole trap, we follow the

analysis in ref. [10], which starts with the envelope equation

for each transverse plane. Throughout this paper we use x

and y to refer to the two transverse coordinates and z for

the axial coordinate. In the horizontal case, assuming an

rms radius a and applying the smooth approximation, the

equation is

d2a

dτ2
+ κ2a −

ǫ2x

a3
=

Nrp

2a
(1)

where rp = q2/4πεmc2 is the classical particle radius, N is

the line density, κ is a focusing constant and τ = ct and ǫ x
is the horizontal emittance given by

ǫ x =
1

mc

√

〈

x2
〉

〈

p2
x

〉

− 〈xpx〉2 (2)

A similar equation applies in the vertical plane. The vacuum

phase advance per RF oscillation σ0 (equivalent to the phase

advance per cell in an accelerator lattice) is defined as

σ0 ≡ κc/ f =
2
√

2qgV0

π2m

(

1

f R

)2

(3)

where f is the RF frequency, R is the radius of the trap, V0 is

the amplitude of the RF waveform applied to the electodes

and g is a shape function defined in [10]. Note - the trans-

verse oscillation frequency ω0, which will be useful later, is

given by fσ0 and the transverse tune ν0 is 2πσ0. Assuming

a stationary plasma ( d
2a

dτ2 = 0) and defining the transverse

temperature T⊥ to be

kBT⊥ =

〈

p2
x

〉

m
(4)

where kB is the Boltzmann constant. One obtains

N =
2

rp


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(5)
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Equation (3) can be rearranged in terms of RF frequency

f =
1

πR

√

2
√

2q

m

V0g

σ0

(6)

and by substituting a σ0 term in Eqn. (5) with Eqn. (3) yields

the following

N =
8πǫ

q2







2
√

2gα2

π2
qV0σ0 − kBT⊥







(7)

where α = a/R (0 < α < 1). By arranging the equation

for the line density in this way, it is made clear that it is

proportional to V0 for any fixed phase advance.

Table 1: PTSX and S-POD Trap Parameters

Parameter PTSX S-POD

Length (m) 2.0 0.1

Radius (m) 0.1 0.005

Max voltage (V) 235 100

RF frequency (MHz) 0.075 1.0

Plasma radius (m) ∼ 0.01 ∼ 0.001

Ion species Cs-133, Ba-137 Ar-40, Ca-40

From Eqn. 1 it can be shown that the depressed transverse

oscillation frequency ω is given by

ω2
= ω2

0 −
ω2

p

2
(8)

where ω0 is the frequency in the zero intensity limit and

ωp =

√

Nrpc2/a2 is the plasma frequency (here we as-

sumed the plasma density is uniform). The normalised tune

depression η is then given by

η ≡ ν
ν0
=

ω

ω0

(9)

In the space-charge limit ωp →
√

2ω0 and η → 0. Recall-

ing that the phase advance is given by ω/ f then Eqn. (8)

becomes

σ2
= σ2

0 −
Nrp

2

(

c

f a

)2

(10)

Using Eqn. (5), the above can be rewritten in terms of η

η =

√

1 −
1

1 + (2/Nrp )(kBT⊥/mc2)
(11)

Note, η is independent of the mass of the ion species since

rp ∝ 1/m. By cooling the plasma (using laser cooling

techniques) towards absolute zero one can achieve η ∼ 0 at

which point the plasma enters a crysalline state (Coulomb

crystal).

The main parameters to choose when designing a LPT

are the frequency and voltage to apply to the electrodes, the

trap radius and length and the choice of ion species. The

Figure 1: Top: Estimated line density and required RF fre-

quency as a function of peak voltage V0 for a stationary

plasma with the phase advance set at π/2 in Eqns. (6, 7).

The line density is shown with the temperature set to 1000 K

(solid black line) and 0 K (dash black line). The RF fre-

quency is shown for the case of Ar-40 and Ba-137 ions when

the radius R is 5 mm (red) and 10 cm (blue). The actual

RF frequency and peak voltage employed by S-POD and

PTSX are also indicated. The shape function g ≈ 0.712 and

α = 0.2 have been assumed as in ref. [10]. Bottom: Nor-

malised tune depression η obtained from Eqn. (11), making

use of the line density in upper figure, and assuming the

temperature is 1000 K. At 0 K it is trivially equal to zero.

line density (and hence η) for a particular phase advance is

given by the voltage and temperature (Eqn. (5, 11)). Once

the voltage is chosen, the product of the RF frequency and

the trap radius is a constant (Eqn. (6)).

This is illustrated in Fig 1 which shows the RF frequency

versus voltage when the trap radius is 5 mm and 10 cm, cor-

responding to the radii of S-POD and PTSX, respectively.

The principal parameters of these traps given in Table. 1.

As can be seen in the table a substantially lower RF fre-

quency is needed at the higher radius but at the expense of a

much longer trap (the required length roughly scales with

the radius to ensure end effects can be neglected). It is also

apparent that very low values of η (in accelerator terms)
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can, in principle, be obtained in both traps at typical plasma

temperatures of 1000 K.

COLLECTIVE MODES

Sacherer found that coherent resonance condition is satis-

fied when the tune of a collective mode Ωm is integer [11].

In terms of incoherent tune shift the resonance condition

becomes

ν0 − Cm∆ν ≈
n

m
(12)

where ν0 is the bare tune, ∆ν is the incoherent tune shift in-

duced by space-charge and Cm is a coherent mode coefficient

which is less than unity for every mode [12]. It was later

found [13] that resonances may also be driven at Ωm ≈ n/2

which leads to

ν0 − Cm∆ν ≈
n

2m
(13)

The above implies the existence of a space-charge driven

resonance at a quarter integer for the m = 2 mode. This

resonance (among others) has been identified in LPT experi-

ments in which both the stopband was measured [3] and the

resonance crossed [5].

Direct detection of a collective mode can be made by

measuring the signal it produces. It may not be feasible to

detect the typically small perturbation voltage induced on

the main electrodes. A separate capacitive pickup electrode

was installed in one LPT in order to measure the collective

mode signal [14]. This consisted of azimuthally segmented

ring electrodes placed inside the main confining electrodes.

The segmentation allows the discrimination of different az-

imuthal mode numbers. The radius of the electrode was

carefully selected to allow the signal to be detected while

not intercepting the plasma. Using this diagnostic the ax-

isymmetric body-wave mode and quadrupolar surface mode

were detected [14].

It is of interest to study how space-charge induced reso-

nances can be enhanced or mitigated by applying nonlinear

fields. In fact emittance growth and beam loss is often caused

by chaotic motion near non-linear resonances which can be

driven either by space-charge effects and/or non-linear ele-

ments [15]. An octupole introduces an amplitude dependent

tune spread which can damp the effect of resonances [16].

For this study a multipole trap would be required.

Instabilites arising from various self-forces of a bunch are

mainly of particular interest in cases where the space-charge

is high (e.g. in high intensity linacs). Emittance exchange

driven by the self-field of the perturbed bunch can lead to

harmful instabilities. Assuming the unperturbed bunch has

uniform density within the elliptic cross section defined by

(

x

a

)2

+

(

y

b

)2

≤ 1 (14)

we may write, assuming the smooth approximation, the tran-

verse emittance ratio ǫ x/ǫ y as follows

ǫ x

ǫ y
=

a2νx

b2νy
(15)

and the energy (temperature) anistropy τ as

τ =
ǫ xνx

ǫ yνy
(16)

for tunes νx , νy .

Dispersion relations for modes of various order are given

in terms of these dimensionless parameters in ref. [17]. It is

found that, in some cases and in certain parameter regimes,

stable modes for round isotropic beams (a/b = 1, τ = 1)

become unstable in the anisotropic case. For example, the

second order odd (tilting) mode is unstable for a sufficiently

large anisotropy.

Although ref. [17] deals with anisotropy between the hor-

izontal and vertical planes, the same results apply for the

transverse and longitudinal planes. For a particular choice

of emittance ratio, regions of instability can be found in

terms of the normalised radial depressed tune νr/νr0 ver-

sus tune ratio νz/νr . These so-called “Hofmann Stability

Charts” (Fig. 2 is an example) are widely used in the design

of high intensity linacs. Experiments performed in linacs

provide evidence of expected instabilities for certain values

of temperature anisotropy [18].

Figure 2: Example of a Hofmann Stability Chart for the

emittance ratio ǫ z/ǫ t = 1.2 where z and t refer to the longi-

tudinal and transverse planes, respectively. The vertical axis

covers the full range of depressed tunes kt/kt0 while the

horizontal axis is the tune ratio kz/kt . The contours show

low to high emittance exchange between the two planes in

increasingly dark shades of blue. The vertical dotted line

corresponds to equal temperatures in the two planes, τ = 1.

This figure is from ref. [18] provided courtesy of the authors.

The idea of studying emittance exchange in a LPT is un-

der consideration. For a stationary plasma in a linear Paul

trap, the temperature among the three degrees of freedom is

approximately uniform Tx = Ty = Tz . In order to investigate

equipartition, it is desired that a controlled level of tempera-

ture anisotropy is introduced. This can be done by cooling

along one or more degrees of freedom. Using laser cooling

directed along the z axis, the axial temperature Tz can be

substantially reduced while the transverse temperature T⊥

remains relatively unaffected.
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HALO FORMATION

Halo formation was among the first beam dynamics top-

ics to be suggested for study in ion traps [1]. In one study,

by adding noise to the quadrupole electrodes for many os-

cillations of the confining RF the growth of a non-thermal

tail of trapped ions was observed [6]. Halo formation has

also been observed in a Penning trap [19]. Evidence for

halo formation can be found by extracting the ion plasma

and measuring the charge as a function of radius using a

multi-channel or transverely moveable Faraday Cup [1, 6]

(or phosphor plate imaged by CCD camera). In modern high

intensity accelerators, beam loss may be even lower than the

1% level [20]. It follows that diagnostics used on the LPT

should have sufficient resolution to detect very small halo

populations.

In recent years, studies of halo formation have concen-

trated on the interplay of space-charge forces, non-linear

lattice elements (e.g. octupole) and synchrotron motion.

Frozen core models have been developed which allow the

particles outside the core to be treated separately from those

within. The synchrotron motion modulates the tune via

the uncorrected chromaticity, but also modulates the space-

charge force in the transverse plane and hence the depressed

betatron tune [21]. Since the synchrotron tune is much less

than the betatron tune, the effect is an adiabatic modulation

of transverse phase space [22]. Although longitudinal ef-

fects cannot be studied in a conventional LPT, the transverse

phase space could be adiabatically modulated, for example

by slowly varying the RF voltage of the quadrupole elec-

trodes (and so the tune), to emulate this process.

In order to study halo formation in detail, and see evidence

for effects such as scattering from or trapping in resonant

islands and diffusion from chaotic regions, a real-time, high-

resolution, non-destructive measurement of phase space

would be invaluable. Such a measurement is in principle

possible using the technique of laser-induced fluorescence

(LIF) [23].

RESONANCE CROSSING AND

DETUNING

One or more resonances can be crossed in a LPT and

the effect on the number of trapped ions can be measured.

As well as the space-charge induced resonances mentioned

earlier, the crossing of integer tune resonances excited by

dipole errors has also been studied [24]. The tune can be

varied in a single experiment by varying either the voltage

or frequency of the waveform applied to the confining elec-

trodes (Eqn. (3)). A dipole error is introduced by applying an

additional RF signal to one or two of the electrodes. This per-

turbation waveform should be a harmonic of the confining

RF in order to create a stopband around a single integer only.

Multiple integer resonances can be excited by perturbing

with a superposition of harmonics.

Some of the results from the integer tune crossing study

suggests the influence of high order multipoles [25]. Imper-

fections in the electrode construction and alignment results

in non-zero multipole components [10]. It would be interest-

ing to carry out a resonance crossing study in a multipole trap

to measure the effect of a controllable level of non-linearity.

If the tune is set to be exactly on an integer resonance, a

dipole kick should cause the magnitude of coherent oscil-

lations to grow without bound. Non-linearities may cause

the tune to move away from the resonance via amplitude

detuning. If the non-linearity is strong enough, or the dipole

kick low enough, the growth of the centroid amplitude of

the plasma will reach a plateau. It is predicted that in the

case of linear amplitude detuning (ν = ν0 + µI), the plateau

should scale with (F/µ)1/3 where F is the magntitude of

the dipole perturbation, I is the amplitude in µ the detuning

coeficient [26]. Detuning with amplitude could be a topic

for study in a multipole trap.

LATTICE FLEXIBILITY

Most beam dynamics studies to date have simulated

FODO lattices since it can be implemented by simply apply-

ing a sinusoidal waveform to each electrode. Doublet, triplet

and FFDD lattices have recently been created by adding

waveforms with the appropriate structure [19]. Lattices with

unequal tunes in the two transverse planes can also be re-

alised by applying different pulse widths to each pair of

electrodes. The dependence of space-charge resonances on

the lattice configuration was investigated for the doublet

case [8], a study that could be extended to other lattice con-

figurations.

It would be of interest to implement the lattices of existing

or planned accelerators for study in a LPT. A multipole trap

would greater extend the reach of ion trap experiments by

allowing non-linear elements to be included. The relative

timing of the voltage pulses applied to the electrodes for each

multipole order would allow the ordering of the “magnets”

to be chosen.

For example, the field in a scaling FFAG varies with ra-

dius r according to B = B0(r/r0)k where k is the field index

and B0, r0 are defined at some reference radius. Though this

field profile contains multipoles of every order, it can be ap-

proximated by truncating around r0 the multipole expansion

of the field profile B =
∑

n k!/(n!(k − n)!) ∗ ((r − r0)/r0)n

(as was done for the PAMELA FFAG design [27]). The

practicalities of trap design would need to be considered for

a significant number of multipoles.

DISCUSSION

The potential for beam physics studies in LPTs would be

greatly extended in traps with higher order multipoles and

by the use of a non-destructive, in-situ diagnostic such as

LIF. Pure multipole traps have already been constructed for

the purpose of reducing rf heating (and so create a greater

volume in which ions are cooled). However, as far as the

authors know, no LPT in which more than one multipole

may be individually set has yet been constructed.

A design for such a trap, with adjustable quadrupole and

octupole electrodes is presented in [10]. Inside the main
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confining quadrupole electrodes, sit four octupole electrodes

with much smaller radii. Simulations confirm that the oc-

tupole component can be specified by sending a separate

waveform to this set of electrodes. Further progress has

recently been made on multipole trap designs [28].

Several practical difficulties are envisaged - including

the screening of the potential from one set of electrodes

by another, the effect of unwanted multipoles induced by

imperfections in the electrode smoothness or alignment and

the extra electronics and feedthrough cables required to feed

∼MHz signals to many electrodes without reflections, and

with the correct phase and amplitude.
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