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Abstract

When optimizing the shape of high-gradient accelerating

cells, the goal has traditionally been to minimize the peak

surface electric field / gradient, or more recently minimizing

the peak modified Poynting vector / gradient squared. This

paper presents a method for directly comparing these quan-

tities, as well as the power flow per circumference / gradient

squared. The method works by comparing the maximum

tolerable gradient at a fixed pulse length and breakdown

rate that can be expected from the different constraints. The

paper also presents a set of 120◦ phase-advance cells for

traveling wave structures, which were designed for the new

CLIC main linac accelerating structure, and which are opti-

mized according to these criteria.

INTRODUCTION

One of the main challenges for the Compact LInear Col-

lider (CLIC) [1] is the design of accelerating structures

which are able to reach very high gradients for long enough

pulse lengths to efficiently produce useful amounts of lumi-

nosity. Part of this is done by optimizing the overall design

of the structure, such as its length, aperture and tapering

while obeying constraints from beam dynamics and min-

imizing the total cost of the machine [2]. An important

component of these calculations is the fast estimation of the

RF parameters and breakdown constraints of a candidate

accelerating structure [3]. These estimates are based on a

database of pre-calculated accelerator cell geometries for a

large number of different iris apertures and thicknesses [4].

The optimization of these cell geometries for maximizing

the gradient for a given breakdown rate is the topic of this

paper.

QUANTITIES FOR OPTIMIZATION

Traditionally, accelerating cavities where optimized using

constraints on the peak surface electric field Ê [5], peak

surface magnetic field Ĥ , or more recently power flow con-

straints such as the averaged power flow through the cell by

the iris aperture circumference P/C [6] or the peak modified

Poynting vector Ŝc [7]. While the geometry parameters af-

fecting Ĥ is often mostly orthogonal to the other constraints,

the choice of which of the iris-dominated constraints Ê,

P/C or Ŝc to optimize for produces different geometries, as

demonstrated in the next section.
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However, the iris-dominated constraints can be directly

compared by using the observed scaling relation [7] for the

average accelerating gradient G, pulse length τ and the break-

down rate BDR
G30τ5

BDR
= K , (1)

where K is a scaling constant which varies between different

structures. By scaling the achieved gradient G for different

cavities to a set of standard conditions with breakdown rate

BDR0 = 10-6 breakdowns / pulse / structure length in meter

and pulse length τ0 = 200 ns, the achievable gradient G′ can

be directly compared between different cavities.

Further, using FEM simulations of the accelerating mode

in a given geometry, it is possible to calculate the ratios be-

tween the limiting factors and the average accelerating gra-

dient as Ē ≡ Ê/G, S̄c ≡ Ŝc/G
2 and also (P/C)/G2. These

ratios are independent of the field level. The normalized

peak fields can then be applied to the re-scaled gradient G′,

yielding a comparison of the peak fields at a common break-

down rate BDR0 and pulse length τ0, as shown in Fig. 1.

From the data presented in Fig. 1 and using Eq. 1, an

expression for the breakdown index

κ ≡ K1/5
=

(

G30τ5

BDR

)1/5

=

G6τ

BDR1/5
(2)

can be defined for each of the limiting factors. For a given

geometry, three breakdown indexes κE , κSc
and κP/C can

thus be computed and compared with the same dimensions.

A higher value of κ implies that the cell is less likely to break

down due to that peak field, and for optimization purposes,

the worst (smallest) breakdown index is used, such that the

overall value for the cell is given as

κ = min
(

κE , κSc
, κP/C

)

. (3)

In many cases, the breakdown index is easier to interpret

when converted to a maximum gradient Ĝ at the standard

conditions. This can be calculated as

Ĝ =
κ1/6 BDR

1/30

0

τ
1/6

0

. (4)

For Ê, the following scaling limit can be found

κE Ē6
=

Ê6τ

BDR1/5
≤

Ê6
0
τ0

BDR
1/5

0

, (5)

where Ê0 is the peak field limit at standard conditions (220–

250 MV/m), indicated with red lines in Fig. 1 [8]. When
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Figure 1: The maximum Ê, P/C and Ŝc for a range of different tested accelerating structures, when the gradient for each

structure is scaled to G′ using Eq. 1 [8]. The curved green lines are the cumulative distribution functions for Gaussian

distributions with µ and σ given by the mean and sample variance of the data. The vertical red lines are the chosen

“pessimistic” and “optimistic” limits.

operating at the limit, the electric breakdown index can thus

be written as

κE =















Ê6
0
τ0

BDR
1/5

0















·
1

Ē6
=

Ĝ6
E
τ0

BDR
1/5

0

, (6)

where ĜE is the maximum permitted gradient from the elec-

tric field when running at standard conditions, in a cell with

normalized electric field Ē.

For the peak modified Poynting vector Ŝc , the relation is

κSc
S̄3
c =

Ŝ3
cτ

BDR1/5
≤

Ŝ6
c0
τ0

BDR
1/5

0

, (7)

where Ŝc0 is the peak field limit at standard conditions (4–

5 MV/mm2) [8]. The modified Poynting vector breakdown

index can thus be written as

κSc
=















Ŝ3
c0
τ0

BDR
1/5

0















·
1

S̄c
3
=

Ĝ6
Sc

τ

BDR1/5
, (8)

where ĜSc
is the maximum permitted gradient from Sc when

running at standard conditions, in a cell with normalized

modified Poynting vector S̄c .

For P/C, a similar relation is also possible. For this, an

expression for the gradient G as a function of the power flow

P is needed. This can be shown to be given as

G2
=

PωR′/Q

vg

, (9)

where ω is the resonance frequency of the mode in radians

per unit time, R′ the shunt impedance per unit length, Q the

quality factor of the mode and vg the group velocity. All

of these are usually calculated as a function of the geome-

try parameters when designing a cell for a traveling wave

structure. This leads to the relation

κP/C

(

vg

ωR′/Q

)3

=

(P/C)3τ

BDR1/5
≤

(P/C)3
0
τ0

BDR
1/5

0

, (10)

where (P/C)0 is the limit at standard conditions (2.3–

2.9 MW/mm). The P/C breakdown index is thus

κP/C =

(P/C)3
0
τ0

BDR
1/5

0

(

ωR′/Q

vg

)3

=

Ĝ6
P/C
τ

BDR1/5
, (11)

where ĜP/C is the maximum permitted gradient from P/C

when running at standard conditions, in a cell with the given

values of ω, vg and R′/Q .

OPTIMIZED ACCELERATOR CELLS

The main purpose of developing the method was to cre-

ate a set of optimized accelerator cells for the CLIC re-

baselining study [2]. The resulting cell designs span a range

of iris aperture openings a and thicknesses d, typically nor-

malized to the wavelength λ and cell length h. For each

of the (a, d)-points, a 5-parameter optimization was used

to find the optimum shape [4, 9]. The resulting gradient

capability Ĝ at standard conditions is shown in Fig. 2. From

this plot, the main trend is that the gradient capability drops

off as the aperture increases. However, a structure consisting

of purely small-aperture cells would not be practical, as the

group velocity in these cells is very small.

C
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Figure 2: Estimated gradient capability Ĝ for finished cell

designs. The plot shows a 2nd order interpolated surface,

where the interpolation points (the stars in the plot) are taken

from a database [4] of cells optimized for maximizing κ.

Figure 3: Estimated gradient capability for finished cell

designs, as predicted from each of the three limits.

Fig. 3 shows the gradient capability of a cell as a function

of the iris aperture and thickness, as predicted from each of

the three limits. This shows that different limits are dom-

inating for different apertures, with Ê and Ŝc both being

important for small apertures, while for larger apertures Ŝc
and P/C are dominating.

As illustrated in Fig. 4, in cells where multiple con-

straints are relevant, the constraints tend to favor different iris

shapes. One example is the small-aperture cell a/λ = 0.07,
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Figure 4: Iris shapes favored by different limiting factors.

d/h = 0.25, where Ê and Ŝc are important. Here Ê avoids

concentrating the electric field in a small area, while Ŝc tends

to separate the electric- and magnetic surface fields, often at

the cost of higher peak fields. Another example is cells with

larger apertures, such as a/λ = 0.19, d/h = 0.4 where Ŝc
and P/C are important. Here P/C favors very square irises

which decreases the group velocity, reducing κP/C at the

cost of stronger peak fields. When optimizing the geometry

of these cells, the breakdown index provides a method for di-

rectly comparing the importance of the different constraints,

yielding an overall optimum.

DISCUSSION AND CONCLUSIONS

This paper presented a method for directly comparing

breakdown constraints from Ê, Ŝc and P/C, as well as it’s use

for optimizing a set of cells for high gradient performance.

One limitation of this method is the lack of uniformity in

the data used for setting the limits Ê0, Ŝc0 and (P/C)0, and

also the data’s normalization for structure length when the

fields in the structures is not likely to be uniform. However,

given the large difference in the power which the gradient

and BDR (and with it, the structure length) enter Eq. 1, the

normalization is a relatively minor concern.
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