ERL Operation of S-DALINAC

M. Arnold, T. Bahlo, M. Dutine, R. Grewe, J. Hanten, L. Jürgensen, J. Pforr, N. Pietralla, F. Schließmann, M. Steinhorst, S. Weih

Picture: Jan-Christoph Hartung

Work supported by DFG through GRK 2128

ERL Landscape

F. Hug, ARIES Milestone Report MS28 – Parameter Database for Various ERL & Linac Facilities, (2019).

Nuclear Physics News International

Volume 28, Issue 2 April-June 2018

FEATURING: S-DALINAC · Total Absorption Spectroscopy SCRIT · CBM · NEPOMUC

Nu**P**CC

EUROPEAN SCIENCE FOUNDATION

<u>+</u>

Taylor & Francis Taylor & Francis Group N. Pietralla,Nuclear Physics News**28 (2)**, 4 (2018).

TECHNISCHE

UNIVERSITÄT DARMSTADT

16.09.2019 | ERL 2019 | Norbert Pietralla | TU Darmstadt | ERL Operation of S-DALINAC

Outline

- S-DALINAC
- Third recirculation beamline
- Once-recirculating ERL operation
- Analytical modeling of observations
- Outlook and Summary

S-DALINAC

Superconducting-DArmstadt-LINear-ACcelerator

Thrice recirculating operation

Energy gain injector:7.6 MeV (10 MeV)Energy gain LINAC:30.4 MeVBeam current:20 μA (@130 MeV)

TECHNISCHE UNIVERSITÄT DARMSTADT

SRF Cavities

Design values

Matarial	Nichium	Number of cells:	20	5
Material:		Length:	1 m	0.25 m
т.	(RRR=200)	β:	1	1
۱. ج،		Q ₀ :	3·10 ⁹	3·10 ⁹
Mode:	2.997 GHZ TM ₀₁₀ , π	E _{acc} :	5 MV/m	5 MV/m
		Power loss @ E _{acc} :	4.2 W	1.05 W

Motivation for additional recirculation

- lower Q and higher dissipated power of the sc cavities
 Final design energy of 130 MeV (cw) was not reached
- Stable and reliable beam was limited to 85 MeV (cw, 2 recirculations)
- Nuclear cross sections increase with E:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = 4(Ze^2)^2 \frac{E^2}{(q\hbar c)^4} \left(1 - \frac{(q\hbar c)^2}{4E^2}\right)$$

for given q = const.

- ➡ Higher energies lead to higher reaction rates and shorter beam times per nuclear-science experiment
- ➡ Goal: 130 MeV final energy (cw): Recirculate once more!

New Separation Dipole Magnet

- Particle tracking of all beam energies (CST Particle Studio)
- Conservative starting conditions
 - Max. beam diameter: 10 mm
 - Max. energy spread: 1.10⁻³
 - Max. angular spread: 0.1°

1 : 5 : 9 : 13 : 17

M.Arnold Dissertation

(TU Darmstadt, 2016)

Director's hair turning grey...

Director's hair turning grey...

TECHNISCHE UNIVERSITÄT DARMSTADT

- 500 cables
- 15 km cables
- 500 m copper-pipes for water
- 250 m flexible tubes
- etc.

Installation and Adjustment

Positioning of Beamline Elements to ~200 μm

Position in mm (1D-Residues)						
Туре	Horizontal (x)	Vertical (y)	Beam Axis (z)			
Dipole	0.27 ± 0.12	0.20 ± 0.14	0.17 ± 0.13			
Quadrupole Typ 1	0.27 ± 0.11	0.19 ± 0.12	0.23 ± 0.18			
Quadrupole Typ 2	0.32 ± 0.16	0.21 ± 0.17	0.28 ± 0.23			
Sextupole	0.33 ± 0.18	0.29 ± 0.22	$(0.15 \pm 0.11)^1$			

¹ Precision of measurement-method, no target position used and thus no residues to it

Туре	Tilt in ° around x and z			
Dipole	0.020 ± 0.019			
Quadrupole Typ 1 und 2	0.057 ± 0.051			
Sextupole	$(0.104 \pm 0.084)^2$			
Long term observation:	² due to adjustment possibilities			
Accelerator hall is "shrinking" by ~ 1mm/3 years \rightarrow concrete still dryin				

TECHNISCHE Completion and fit for ERL UNIVERSITÄT DARMSTADT New separation New beam line dipole including 360° path length adjustment system 330 mm

Overview Operation Modes / Commissioning

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

 Commissioning of modes following beam time schedule

Outline

- S-DALINAC
- Third recirculation beamline
- Once-recirculating ERL operation
- Analytical modeling of observations
- Outlook and Summary

Efficiency of an ERL

• "Beam-recovery efficiency"
$$\mathcal{E}_{b} = \frac{\int dP_{\text{decel.}}}{P_{b,\max}}$$
 $P_{b,\max} = E_{\max}I_{\max}$
$$\frac{(E_{\max} - E_{\text{dump}})I_{\text{dump}}}{P_{b,\max}} < \mathcal{E}_{b} < 1 - \frac{E_{\text{dump}}}{E_{\max}} = \mathcal{E}_{b,\max}$$

- Limited by design of accelerator
- "RF recovery effect"
 - Reduction of external RF power as compared to single-end operation

$$\varepsilon_{RF} = \frac{P_{RF,acc.} - P_{RF,ERL}}{P_{RF,acc.}}$$

Overview Operation Modes / Commissioning

17

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

 Commissioning of modes following beam time schedule

Once-Recirculating ERL Operation

- Energy gain injector: 2.5 MeV
- Energy gain LINAC: 20.0 MeV
- Current (I_{in}):

Data taken in four phases:

- Phase 1 (ERL Operation): one accelerated and one decelerated beam
- Phase 2 (no beam): RF operation of cavity without beam
- Phase 3 (1x acc.): one accelerated beam
- Phase 4 (2x acc.): two accelerated beams

Raw Data

- Forward (P_f) and reverse (P_r) powers of first cavity
- Thermal drift over time during beginning of operation due to heating of input coupler
- Only changes due to beamloading relevant

Raw Data (during "no beam")

Linear regression (time period without beam)

$$\tilde{P}_i = P_i - \left[\left(\frac{\Delta P}{\Delta t} \right)_i t + \tilde{P}_{0,i} \right]$$

- Slope of both powers nearly identical
- Correction of raw data by linear background → trivial warmingup drifts eliminated

Once-Recirculating ERL Operation

K. Sonnabend, Physik Journal 10, 7 (2017).

RF Measurements - Power

Operation	Mean Beam Power in W	
No Beam	0.00 ± 0.01	
One Beam (acc.)	4.51 ± 0.16	
Two Beams (acc. + acc.)	8.59 ± 0.01	
ERL (acc. + dec.)	0.45 ± 0.03	

RF-recovery effect:

 $\varepsilon_{RF} = (90.1 \pm 0.3)\%$

Value and uncertainty take correlations between fit parameters into account.

Beam-recovery efficiency:

 $\varepsilon_{b,max} = 88.9\%$

Analytical Model

- · Beam as additional external load couples to electric field
- Reflection coefficient changes

$$r = \frac{\beta_{input} - (1 + \beta_{output} + \beta_{beam})}{\beta_{input} + (1 + \beta_{output} + \beta_{beam})} = \sqrt{\frac{P_r}{P_f}}$$

LLRF system keeps electric field in cavity constant by changes in P_f

$$P_{f} = P_{0} \frac{\left[\beta_{input} + (1 + \beta_{output} + \beta_{beam})\right]^{2}}{4\beta_{input}}$$

• P_r reacts accordingly (almost symmetrically)

$$P_{r} = P_{0} \frac{\left[\beta_{input} - (1 + \beta_{output} + \beta_{beam})\right]^{2}}{4\beta_{input}}$$

Analytical Model

Analytical Model With Uncertainties in Data

RF Measurements - Power

Operation	Mean Beam Power in W	
No Beam	0.00 ± 0.01	
One Beam (acc.)	4.51 <u>+</u> 0.16	
Two Beams (acc. + acc.)	8.59 ± 0.01	
ERL (acc. + dec.)	0.45 ± 0.03	

RF-recovery effect:

 $\varepsilon_{RF} = (90.1 \pm 0.3)\%$

Value and uncertainty take correlations between fit parameters into account.

Beam-recovery efficiency:

 $\varepsilon_{b,max} = 88.9\%$

8.59 about 10% less than 2 x 4.51

Incomplete transmission due to abstaining from beamline optimization

Once-Recirculating ERL Operation

K. Sonnabend, Physik Journal 10, 7 (2017).

RF Measurements - Stability

- Amplitude errors sensitive to beam loading
 - \rightarrow "local" measurement of RF-recovery effect per cavity

RF Measurements - Stability

- Amplitude errors sensitive to beam loading
 - \rightarrow "local" measurement of RF-recovery effect per cavity

Phase Slippage

30

- Total change in setpoint of path length adjustment system: 186°
- Injection energy of 2.5 MeV $\rightarrow \gamma \approx 4.9$
 - Time-of-flight effects
 - Energy after one recirculation to re-enter main linac: 22.5 MeV $\rightarrow \gamma \approx 44$
 - Same effect for deceleration at last cavity
 - Need to shift phase of re-entering beam \rightarrow 6° $\beta(z) = 1 - \frac{1}{2} \left(\frac{mc^2}{\Delta E}\right)^2 \frac{1}{\left(\frac{E_{\rm in}}{\Delta E} + \frac{z}{T}\right)^2}$
 - Constant-gradiant approximation:
 - Expected Half Drift-Time Difference $\delta \Delta T = 16^{\circ}$

Summary and Outlook

Summary and Outlook

Thank you for your attention!

Picture: Jan-Christoph Hartung

