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Abstract
An original free-electron laser (FEL) paper relied on quan-

tum analysis of photon generation by relativistic electrons in

alternating magnetic field [1]. In most cases, however, the

system of pendulum equations for non-canonical variables

and the theory of classical electromagnetism proved to be

adequate. As x-ray FELs advance to higher energy pho-

tons, quantum effects of electron recoil and shot noise has to

be considered. This work presents quantization procedure

based on the Hamiltonian formulation of an x-ray FEL inter-

action in 1D case. The procedure relates the conventional

variables to canonical coordinates andmomenta and does not

require the transformation to the Bambini-Renieri frame [2].

The relation of a field operator to a photon annihilation op-

erator reveals the meaning of the quantum FEL parameter,

introduced by Bonifacio, as a number of photons emitted by

a single electron before the saturation takes place [3]. The

quantum description is then applied to study how quantum

nature of electrons affects the startup of x-ray FEL and how

quantum electrons become indistinguishable from a clas-

sical ensemble of electrons due to their interaction with a

ponderomotive potential of an x-ray FEL.

INTRODUCTION
A one dimensional free-electron laser (FEL) theory has

played a dominate role in understanding how FELs generate

electromagnetic radiation in an undulator with a strength pa-

rameter K = eB0/kum0c2, which is given in CGS units

here, and period λu . This theory allows for an univer-

sal scaling that only depends on the FEL parameter ρ =
(1/γ) (KΩP/4cku)2/3 [4] and predicts that in a helical un-
dulator, electrons with energy γ in m0c2 units generate radi-
ation at a wavelength λ = λu/2γ2

(
1 + K2

)
. This generation

is driven by electron bunching and is governed by the first

order equation deduced from Maxwell’s equations:

dA
dz
=
1

N

N∑
α=1

e−iθα, (1)

where the field amplitude A is measured in terms of the

saturation value Es = (m0c/e)ΩP
√
ργ, time is replaced

by the distance along the undulator z = ct/Lg0 measured

in the units of the gain length Lg0 = (2kuρ)−1, and θα =
(k + ku) zα−ωt is a ponderomotive phase of the αth electron
out of N with respect to the radiation. The electron bunching

by the generated radiation is described by the pendulum

equations [5, 6] derived most often form the Lorentz force
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equation:

dθα
dz
= ηα (2a)

dηα
dz
= −2Re

(
Eeiθα

)
, (2b)

where ηα = (γ − γr ) /ργr is the relative energy detuning.
Future x-ray FEL designs, that reduce energy of elec-

trons for a given energy of x-ray photons by reducing the

undulator period, will require the quantum theory of FEL

operation [7]. The equations above are not suitable for a

quantum description since they assume that one can specify

the exact ponderomotive phase, energy detuning and the

field amplitude simultaneously at any point in time. Yet, the

principle of stationary action S, which is an attribute of the
dynamics of a physical system, from which the equations of

motion of the system can be derived is better suited for gen-

eralizations. Moreover, it is best understood within quantum

mechanics, where a system does not follow a single path but

its behavior depends on all imaginable paths.

The principle of stationary action is a variational principle

δS = 0 that was best formulated by W. R. Hamiltonian in
1834. It has been used on an occasion to describe electrons

in a helical undulator [8] but not the generated radiation,

which was described by Maxwell’s equations. R. Feynman

has demonstrated how this principle can be used in quantum

calculations by introducing path integrals [9]. We however

will use this principle for an FEL system consisting of rela-

tivistic electrons and generated radiation in order to derive a

non-relativistic Hamiltonian without the Bambini-Renieri

frame [2]. We will then generalize the Hamiltonian principle

to quantum mechanics through Poisson brackets for canoni-

cal variables. We will finally apply this result to the study

of quantum evolution of electrons in an FEL in order to de-

termine if quantum uncertainty of an electron’s position can

reduce the electron bunching and degrade FEL performance.

HAMILTONIAN PRINCIPLE
The Hamiltonian principle is W. R. Hamilton formulation

of the principle of stationary (least) action. It states that the

dynamics of a physical system is determined by a variational

problem for a functional based on a single function, the

Lagrangian:

δS [q (t)] = δ
∫ t2

t1

L (q (t) , �q (t) , t) dt = 0 . (3)

One can use it to obtain equations of motion when applied

to the action of a mechanical system such as electrons in an

FEL but can be also used to derive Maxwell’s equations.
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First, we write the action function for N relativistic elec-

trons interacting with an electromagnetic field [10]:

S = −
N∑

α=1

∫
m0cdsα −

∫
Ak jk

c2
dΩ −

∫
FikFik

16πc
dΩ , (4)

where dsα is the proper time interval for the αth electron;
Ak = (0,−Au − Ar ) is the four-vector potential in radiation
gauge; jk is the current four-vector, which is the product of
the charge density,

ρe = −e
N∑

α=1

δ(r − rα(t)) ,

and the four-velocity vector uk = (c, �r); and dΩ = cdtd3r is
the proper volume. Finally, Fik = (∂Ar/c∂t,∇ × Ar ) is the
electromagnetic field tensor in a short-hand notation.

Second, we determine the Lagrangian for the whole sys-

tem S =
∫ t2

t1
(Le + Lint + Lr) dt after integrating Eq. (4) over

interaction volume V . The first two terms are standard and
describe N relativistic electrons in the presence of an undu-

lator field and generated radiation:

Le+Lint = −
N∑

α=1

⎡⎢⎢⎢⎢⎣m0c2

√
1 − �r2α

c2
+

e
c
(
Aα
u + Aα

r

) �rα⎤⎥⎥⎥⎥⎦ , (5)
where the vector potentials Aα

u and Aα
r are evaluated at the

position of the αth electron.
The last term in the Lagrangian describes the generated

radiation and is necessary for deriving Maxwell’s equations

but can be used for deriving the growth equation 1 instead.

Let us focus on 1D theory and neglect the dependence of

the generated radiation on transverse coordinates x and y in

our choice of the vector potential:

Ar (z, t) = − i
2k

E(t)εeikz−iωt + c.c., (6)

where ε is a polarization vector and E(t) is a complex, slowly-
varying amplitude, which equation of motion we are inter-

ested in finding. The corresponding Lagrangian for such a

specific radiation in a volume V is

Lr = i
VE∗

4πω
�E, (7)

where dt integration by parts on terms containing �E∗ has
been carried out; and the term proportional to �E(t)/ω2 has
been neglected according to the slowly-varying amplitude

approximation.

Finally, the Hamiltonian principle for a 1D FEL can now

be written as:

δ

∫ q(t2)

q(t1)
pEdE +

N∑
α=1

(pαdrα − Hαdt) = 0, (8)

where the conjugate momenta have been found from p def
=

∂L/∂ �q such that

pα =
m�rα√

1 − �r2α/c2
− e

c
(
Aα
u − Aα

r

)

and

pE = i
V
4πω

E∗,

and Hα is the standard Hamiltonian of an electron in an elec-

tromagnetic field obtained as a result of the Legendre trans-

formation of the Lagrangian: H = p �q − L (q (t) , �q (t) , t).
It is common, at this point, to perform the Lorentz transfor-

mation from the laboratory frame of reference to the moving

frame introduced by Bambini and Renieri in order to obtain a

non-relativistic Hamiltonian [2]. In contrast to this approach,

we will employ canonical transformations that generate FEL

variables and obtain the Bambini-Renieri Hamiltonian for

electrons that are near an FEL resonance. This is similar to

the approach discussed in Ref. [11] yet it will be carried out

in the context of a planar undulator.

CANONICAL TREATMENT OF
PLANAR UNDULATOR

We will assume a near-axis magnetic field of a planar

undulator to be B = −B0 sin(kuz)êy . The Hamiltonian equa-
tions of motion immediately imply that the components

px = 0 and py = 0 are constants of motion. Hence, a single
electron Hamiltonian becomes

Hα = c

√
p2α + m2c2

[
1 +

K2

2 + K2
cos(2kuzα)

]
, (9)

where Hα = γα (0)m0c2 is the energy of an electron at an
undulator entrance, m2 = m2

0

(
1 + K2/2) is a mass of an

“undulator” electron that incorporates the transverse degrees

of freedom such that γz,α = γα (0) /
√
1 + K2/2 with K =

0.934 B0[T] λu[cm], and pα is a projection of the canonical
momentum, which is no longer a constant of motion, on

z-axis.
In the limit of K/γ � 1, the projection of the canonical

momentum on the axis of a planar undulator has two separate

terms:

p ≈ p̄ − 1

2p̄
m2c2K2

2 + K2
cos(2kuz), (10)

with p̄ = mc
√
γ2z − 1 as an undulator averaged part of the

canonical momentum. The complexity of a planar undula-

tor description comes from the oscillating term so we will

remove it by introducing a new canonical momentum with

the help of the following generating function

F2(z, p̄) =
∫

pdz

= zp̄ − 1

4ku p̄
m2c2K2

2 + K2
sin(2kuz),

(11)

that generates a new canonical coordinate as follows:

z̄ =
∂

∂ p̄
F2(z, p̄) = z +

1

4ku p̄2
m2c2K2

2 + K2
sin(2kuz). (12)

This leads to a new Hamiltonian Hα ≈ c
√

m2c2 + p̄2α where
p̄α is a constant of motion.
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Generation of electromagnetic radiation perturbs this

Hamiltonian such that:

Hα = c
√

m2c2 + p̄2α + V (zα, E) +O
(
E2

)
, (13)

with an interaction potential

V (zα, E) = K
γα(0)

Im

[
eE
k
cos (kuzα) eikzα−iωt

]
(14)

being still dependent on the old coordinate, zα. We need to
use Jacobi-Anger expansion

exp(iY sinΦ) =
∞∑

n=−∞
Jn(Y ) exp(inΦ) , (15)

in order to write the interaction potential in terms of the new

coordinate z̄α

V (z̄α, E) = K
2γα(0)

∞∑
n=−∞

Ĵ JnIm

[
eE
k

eikn z̄α−iωt

]
, (16)

where kn = k + (2n + 1)ku and Ĵ Jn ≈ Jn [Y+] + Jn+1 [Y−]
with Jn [] being Bessel functions of the first kind and Y± =
−((k ± ku)/2kuγ2z ) × (K2/4 + 2K2).
We finally say that an FEL interaction is resonant if

kn z̄α − ωt does not depend on time, which is fulfilled if
k = (2n + 1) ku �̄zα

(
c − �̄zα

)−1
. A fundamental mode corre-

sponds to the case of n = 0, which results in the interaction
potential similar to the one, a relativistic electron experi-

ences in a helical undulator:

V0 (z̄α, E) = K̂
2γα(0)

Im

[
eE
k

ei(k+ku )z̄α−iωt

]
(17)

where K̂ = Ĵ J0K is a modified undulator parameter.

INTRODUCING FEL NOTATIONS
It has been pointed out in the previous section that the

ponderomotive phase θα = (k + ku) z̄α − ωt of the αth elec-
tron with respect to the radiation is what affects the FEL

generation. Hence, we will introduce it as a new canon-

ical coordinate with the help of the following generating

function, F2 (z̄α, pθ ) = pθ [(k + ku) z̄α − ωt] that generates
a new conjugate momentum p̄ = (k + ku) pθ and a new
Hamiltonian:

Hα = c
√

m2c2 + (k + ku)2 p2θ,α −ωpθ,α +V0(θα, E) , (18)

which becomes a conserved quantity. The resonance con-

dition, �θα = 0, now implies that ∂Hα/∂pθ,α = 0 from the

corresponding Hamiltonian equation so that the energy of a

resonant electron is γrm0c2 = mc2 (k + ku) /
√

ku (2k + ku).
The later condition corresponds to the velocity of a resonant

electron being �̄zr = ω/(k + ku), which is in accordance with
the resonance condition of the previous section.

The resonant condition also implies that the system is

near the minimum of the Hamiltonian. Assuming that any

departure due to the interaction potential from the resonance

is small, we expand the Hamiltonian near this minimum:

Hα = Hr +
ku (k + ku)2

kγrm0
Δp2α,θ +

K̂
2γr

Im

[
eE
k

eiθα
]
, (19)

and obtain a non-relativistic Hamiltonian without resorting

to the transformation into the Bambini-Renieri frame.

We are finally ready to introduce the FEL parameter ρ as
a fraction of total electron energy transfered into electromag-

netic energy, ργrm0c2N = (E2
s /4π)V , upon saturation. We

will also introduce a new independent variable τ = 2ρkuct
that rescales the Hamiltonian as H = 2ρkucHnew so that

Hα =
Δp2α,θ
2M

+
em0K̂Es

4Mkuk2
Im

[
Aeiθα

]
, (20)

where an effective mass, M ≈ ργrm0c/k, and a normalized
amplitude A = E/Es have been introduced, and a constant

contribution to the Hamiltonian has been omitted. By com-

paring the first Hamiltonian equation with Eq. (2a), we can

identify that ηα = Δpα,θ/M such that the second Hamilto-

nian equation becomes

dηα
dτ
= − em0K̂Es

4M2kuk2
Re

[
Aeiθα

]
. (21)

Comparing this equation with Eq. (2b), one obtains that the

FEL parameter is ρ = (1/γr )(K̂ΩP/8ωu)2/3 in terms of an
electron’s plasma frequency Ω2P = 4πe2ne/m0 for electron

density ne = N/V . The resulting Hamiltonian:

H =
N∑

α=1

(
Δp2α,θ
2M

+ 2MIm
[
Aeiθα

] )
, (22)

leads to the final equation of the 1D FEL theory Eq. (1) via

its derivative with respect to the conjugate moment pA =

iMN A∗.

QUANTIZATION PROCEDURE
In order to quantize the FEL Hamiltonian we note that,

since it is related to the original Hamiltonian principle Eq. (8)

via canonical transformations, commutation relations are

preserved:
[
θ̂, p̂θ

]
= i� and

[
Â, p̂A

]
= i�. These relation-

ships can now be used to derive Heisenberg equations for

operators, which are visually identical to the classical 1D

equations Eqs. (1) and (2).

From the first commutator relationship, one can derive

the Heisenberg uncertainty for the electron operators that

reads in the FEL notations as:

ΔθΔη ≥ �

2M
=

1

2ρ̄
, (23)

where ρ̄ is the quantum FEL parameter introduced in Ref. [3].

In the limit when the quantum FEL parameter is large, the

ponderomotive phase and the energy detuning can be exactly

specified at any point in time. Thus, the quantum FEL pa-

rameter single-handedly determines how quantum electrons

are.
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For radiation operators Â and Â†, the commutator is[
Â, Â†] = (N ρ̄)−1, which is always small due to a large
number of participating electrons, N . The photon annihila-
tion and creation operators never commute since

[
â, â†

]
= 1.

Comparing two commutators, one can introduce the photon

annihilation operator as â =
√
ρ̄N Â such that a physical

meaning of the quantum FEL parameter becomes apparent

since
〈
â†â

〉
= ρ̄N |A|2. It is the number of photons emitted

by a single electron before saturation.

ELECTRON EVOLUTION
A 1D quantum FEL theory can now be used to study

the quantum state evolution of electrons in an FEL. In the

case of an FEL with 12 GeV electrons that can generate

120 keV photons, the quantum FEL parameter ρ̄ = 10 for a
typical FEL parameter ρ = 10−4. In this case the Heisenberg
uncertainty principle states that ΔθH ≥ 0.05 for Δη = 1,

which is the highest energy uncertainty for an FEL to laze.

Therefore, an electron is no longer a point particle but a wave

packet. It means that a well-localized electron does not stay

localized for long if there is no trapping potential since the

free space dispersion cases the wave packet to spread [12].

Let us represent the state of a quantum electron at an FEL

entrance by a Gaussian of width σ:

Ψθ0,p0 (θ, 0) =
1√√
2πσ

e−
(θ−θ0)2
4σ2 +i

p0
�
θ
, (24)

where θ0 and p0 are initial position and momentum of an

electron. The wave packet spreading means that position

uncertainty of an electron increases according to

σ2(τ) = σ2 + τ2

4ρ̄2σ2
, (25)

where the quantum FEL parameter controls the free space

dispersion. Since it takes τ = 4π for an FEL to reach sat-
uration, the minimum position uncertainty at saturation is

expected to be σs =
√
4π/ρ̄ ≈ 3.5ρ̄−1/2. It is achieved if

an electron started with σm = σs/
√
2, which corresponds

to Δη0 = 1/
√
8πρ̄ initially [13]. This position uncertainty

is higher than the one expected from the Heisenberg uncer-

tainty principle, ΔθH .
Assuming that the radiation field amplitude A is a c-

number that is equal to the solution of the classical 1D FEL

theory equations, the quantum evolution of this wave packet

can be described by the Schroedinger equation:

i
∂Ψ

∂τ
=

{
− 1

2ρ̄

∂2

∂θ2
+ 2ρ̄Im

[
A (τ) eiθ

]}
Ψ (θ, τ) , (26)

where the coordinate representation of the Hamiltonian op-

erator has been used.

The radiation field, which determines properties of the in-

teraction potential, grows exponentially A (τ) ∝ e((i+
√
3)/2)τ .

Its magnitude determines the strength of the interaction po-

tential while the phase determines its relative position. The

−1.5 −1.0 −0.5 0.0 0.5 1.0

θ/π

−0.4 −0.2 0.0 0.2 0.4

η= pθ/M

Figure 1: Family of initially stationary wave packets, p0 = 0,
with σm = 0.354 and θ0 in the range from −π to 0.75π
(blue) after spending τ = 3π in the interaction potential
with A(0) = 10−4 and ρ̄ = 50 (red). The wave packets

are presented as |Ψ|2 where a vertical offset corresponds to
an average energy of an electron

〈
Ĥ
〉
=
∫ ∞
−∞ Ψ

∗ĤΨdθ that
finally places them below the top of the interaction potential.

The momentum distributions (green) are no-longer centered

at zero, which leads to a net displacement of wave packets

and onset of bunching. The wave packet displacements are

still masked by the spreading.

linear growth of the phase implies that the interaction poten-

tial is moving with a speed v = −0.5. Therefore, a stationary
electron has a momentum Δpθ = −M/2 = −�ρ̄/2 with
respect to the potential, which corresponds to the kinetic

energy �−1K̃ = ρ̄/8 that places the electron above the poten-
tial for as long as |A| < 0.0625. This critical magnitude of
the radiation field amplitude is reached at τ = τs − π in ac-
cordance with the magnitude growth exp

((√3/2) (τs − π) )
and |As | = 1.
Numerical solutions of the Schroedinger equation with

ρ̄ = 50 as in the case of MaRIE x-ray FEL, after interac-

tion time τ = 3π are presented in Figure 1 for a family of
initially stationary wave packets, which are uniformly dis-

tributed in the range from −π to 3π/4. They clearly illustrate
our theoretical expectations outlined above. Here, the in-

teraction potential is shifted from its original position by

ψA(3π) = 3π/2 and is finally strong enough to trap most
of the electrons,

〈
Ĥ
〉
< 2ρ̄|A(3π)|. At this point, some

electrons have already emitted up to 20% of the maximum

number of photons yet some of them have absorbed as much

thus resulting in |A(3π)|2 = 0.4% net emission.

The interaction potential is expected to significantly mod-

ify evolution of an electron for τ > 3π. The electron placed
at the most right in Figure 1 will emit the most photons

as it continues to increase its negative momentum, which

is associated with recoil. Reflection of the positive slope,

which moves to the left, will compress that wave packet as

well as accelerate it by pushing on it. Thus an electron surfs

the ponderomotive wave as it gains momentum.
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−1.5 −1.0 −0.5 0.0 0.5

θ/π

−3 −2 −1 0 1 2

η= pθ/M

Figure 2: Electron’s wave packets (blue) after spending

τ = 4π in the interaction potential with A(0) = 10−4 and
ρ̄ = 50 (red). At this point, the radiation amplitude reaches
its maximum value of A(4π) ≈ 1 that corresponds to the

radiation field at saturation. Ensemble averaging of the quan-

tum bunching is 1
N

∑N
α=1

〈
e−iθα

〉
= 0.76, which is equal to

the classical bunching.

The wave packets of electrons at saturation are presented

in Figure 2. They have been obtained by numerical inte-

gration of the Schroedinger equation with ρ̄ = 50 till the

radiation field amplitude has reached its maximum. Here,

one can see that the wave packets are no longer Gaussian

and may even have long tails that extend beyond a single

ponderomotive bucket. The ensemble, however, is bunched

within 25% of a single bucket width. Although this bunch-

ing is not perfect, 1
N

∑N
α=1

〈
e−iθ

〉
= 0.76, it is not due to the

wave packet spreading but due to different initial positions

of electrons as they evolve in the interaction potential.

CONCLUSION
This manuscript provides canonical formulation of the

1D FEL theory in a planar undulator instead of a helical one.

This formulation does not require usage of the Bambini-

Renieri frame in order to end up with a non-relativistic

Hamiltonian. We have also showed that the growth equa-

tion for the generate field amplitude can be derived using

Hamiltonian principle instead of Maxwell’s equations.

The canonical nature of the theory allows immediate gen-

eralization of the Hamiltonian principle to quantum mechan-

ics through Poisson brackets for canonical variables and

their relationship to commutators for quantum operators.

The quantum analysis of the electron operators identifies the

importance of the quantum FEL parameter ρ̄ that determines
whether a ponderomotive phase and electron’s energy can

be known exactly at the same time. The quantum analysis

of the field operators identifies the physical meaning of the

quantum FEL parameter as number of photons emitted by a

single electron before saturation.

Finally, the manuscript discusses the quantum state evo-

lution of an electron in an interaction potential created by

a classical radiation numerically calculated based on the

classical 1D FEL theory. During the first three fourth of

the undulator length, the interaction potential is too weak

to affect the quantum evolution of an electron state. In the

remaining undulator length, the interaction potential domi-

nate the quantum evolution of the electron state, which has

been demonstrated by numerically solving the Schroedinger

equation for in the case of ρ̄ = 50 until the radiation am-

plitude has reached maximum. At this point, electrons are

bunched within a 25% of a bucket width by the action of

the interaction potential. We thus conclude that reduced

bunching cannot be attributed to the wave packet spreading

but to different initial positions of electrons with respect to

the interaction potential.
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