PROGRESS OF DELHI LIGHT SOURCE (DLS) AT IUAC, NEW DELHI*

Introduction

Delhi Light Source (DLS) project has 3 phases: > Phase-I: NC RF electron gun, Prebunched FEL, ~ 8 MeV, 0.15 - 2 THz, $\lambda = 2$ mm -150 μ m. > Phase-II: SC RF electron gun: Terahertz (high av. power) radiation > Phase-III: A few 9 cells Tesla type cavities, Energy boost up: 8 - 40 MeV, IR by undulator,

Estimated time to complete Phase-I: by 2018

Various development of Phase-I of DLS

Major Components

- > NC copper cavity. Klystron and Modulator > Photocathode deposition /transfer mechanism > Devices – Laser, Undualtor, other magnets
- > Beam diagnostic / radiation detection devices

Copper cavity as electron gun

Uniqueness of the facility > Prebunched FEL by splitting a laser pulse in 16 > Tunability - varying laser pulse separatn Compactness of the facility ~ a few metres > Very low emittance – use of photocathde

Beam Line layout

Design of Undulator

Technology	Hybrid planer Anti-symmetric]
Magnet	Permanent NdFeB magnet	1 ACART
	$(B_r = 1.21T)$	
Pole	Vanadium permendur	
		i and the states
Magnetic gap	20-45 (mm)	MIPFEIT
Period length	50 mm	Miniature mode
No of Periods	28 (Full)	
Magnetic field	0.62 -0.11 (T)	
Undulator parameter (K)	2.89-0.61	ub -0.2
1 , , ,		ੱਸ਼ੂ -0.4
Radiation Frequency	0.18 - 2.85 THz	a o.e
Device length	~1.5 m	-200 -100 U
Device lengui		Field n

dia ~ 1.89 mm

$Q_0 = 15211$

Klystron and Modulator Parameters

Sr. No.	Parameter – RF system	Value
1	Peak Output power	$\geq 25 MW$
2	Average Output power	$\geq 5 kW$
3	Operating frequency	2860 MHz
4	Bandwidth (-1 dB)	$\pm 1MHz$
5	RF pulse duration	0.2 µs to 4 µs
6	Pulse repetition rate	1-50 Hz
7	Pulse top flatness	±0.3%
8	Rate of rise and fall of modulator output voltage	200-250 kV/µs
9	Long term stability	±0.05 %

Present Status

Class 10000 clean room to accommodate the complete facility was installed Copper resonator was fabricated, tested w low power, to be installed beginning of 2018 Beam optics calculation is finalized. Radiaion simulation is going on Parameter finalization for Klystron/Modulator was over, order was, device to be delivered at the beginning of 2018

Parameter finalization for Laser is done. Detail design of the fiber laser is going on. Development will start - end of this year, to be operational at IUAC by Summer, 2018 Basic design of Photocathode deposition system is done, fabrication will start - next 6 months

Various beam optics components and electromagnet are being designed or procured.

* The work is supported by Board of Research in Nuclear Science, India and Inter University Accelerator Center, India, [†]ghosh64@gmail.com

MOP046