

67th ICFA Advanced Beam Dynamics Workshop on Future Light Sources **FLS 2023** 



# How can machine learning help future light sources?

<u>A. Santamaria Garcia</u>, C. Xu, L. Scomparin, E. Bründermann, M. Caselle, G. De Carne, A. -S. Müller



www.kit.edu

#### **Accelerator roadmap**





Technological innovation is needed to keep up with the challenging goals

Source: "Particle beams behind physics discoveries" (Physics Today)

#### Trends and challenges of frontier accelerators



**Denser beams for** higher luminosity and brilliance

- Complex beam dynamics
- Complex accelerator design and operation

Larger circular colliders for higher energies

- Orders of magnitude more signals
- Machine protection limits

**Compact plasma** accelerators with higher gradients

- Tight tolerances
- High-quality beams required











Image: DESY

#### What is machine learning?



### **ARTIFICIAL INTELLIGENCE (AI)**

Computers mimic human behaviour

- First chatbots
- Robotics
- Expert systems
- Natural language processing
- Fuzzy logic
- Explainable AI



### **MACHINE LEARNING (ML)**

Computers learn without being explicitly programmed to do so and improve with experience

Data

#### **DEEP LEARNING (DL)**

Multi-layered neural networks perform certain tasks with high accuracy



- Speech/handwriting recognition
  - Language translation
- Recommendation enginesComputer vision

Narrow Al



Algorithm



**N I T** 

- Networks
- Recurrent Neural Networks
- Long Short-Term Memory Networks
- Autoencoders
- Deep Boltzmann Machine
- Deep Belief Networks

#### **Bayesian Algorithms**

- Naive Bayes
- Gaussian Naive Bayes
- Bayesian Network
- Bayesian Belief Network

Bayesian optimization

Regularization, dimensionality reduction, ensemble, evolutionary algorithms, computer vision, recommender systems,

...

How can machine learning help future light sources? - Andrea Santamaria Garcia

0

earnin

Machine

#### Machine learning opportunities in accelerators



Advantages of ML methods:

- Yield fast predictions at a reduced computational cost
- Take into account non-linear correlations
- Adapt the predictions to the drifts in the machine state



| Task         | Goal                                                                                               | ${ m Methods}/{ m Concepts}$                                                                    | $\mathbf{Examples}^1$                                                                                  |
|--------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Detection    | Detect outliers and anomalies<br>in accelerator signals for interlock<br>prediction, data cleaning | <ul><li>Anomaly detection</li><li>Time series forecasting</li><li>Clustering</li></ul>          | <ul><li>Collimator alignment</li><li>Optics corrections</li><li>SRF quench detection</li></ul>         |
| Prediction   | Predict the beam properties based<br>on accelerator parameters                                     | <ul><li>Virtual diagnostics</li><li>Surrogate models</li><li>Active learning</li></ul>          | <ul><li>Beam energy prediction</li><li>Accelerator design</li><li>Phase space reconstruction</li></ul> |
| Optimization | Achieve desired beam properties<br>or states by tuning accelerator parameters                      | <ul><li>Numerical optimizers</li><li>Bayesian optimization</li><li>Genetic algorithm</li></ul>  | <ul><li>Injection efficiency</li><li>Radiation intensity</li></ul>                                     |
| Control      | Control the state of the beam in real time<br>in a dynamically changing environment                | <ul><li>Reinforcement learning</li><li>Bayesian optimization</li><li>Extremum Seeking</li></ul> | <ul><li>Trajectory steering</li><li>Instability control</li></ul>                                      |

 $^{1}$  non-exhaustive

#### A vision for future accelerators, driven by ML



# Autonomous operation

Faster start-up Faster commissioning Faster set-up of special modes

New operation modes possible

ncreased beam

Efficient usage

availability

#### Intelligent control of beam dynamics

Phase space manipulation Tailored beams for users Instability control

#### Continuous beam delivery

Failure & interlock prediction Preventative maintenance Virtual diagnostics

Reduced operation costs

#### Energy responsible

Increased sustainability Power quality improvement



#### = KARA + Energy Lab 2.0

### Energy-responsible infrastructure R&D from accelerator components to systems



Real-time power consumption data from the accelerator will be fed to a **digital twin** that can emulate with high fidelity the **accelerator power and energy dynamics** during power systems studies.

### ML for light sources – some examples



#### Source stabilization

#### **Instability control**

Low-latency intelligent feedbacks

#### Assisting operation

- Automated set-up / tuning
  - Injection optimization, beam steering and focusing, PBA tuning
- Special operation modes
  - Negative  $\alpha_c$
- Pulse optimization
  - Energy, E-field, spectrum
- Faster commissioning
- Virtual diagnostics

#### Faster lattice design



- Uncertainty quantification
- □ Explainability/interpretability
- Robustness
- Safety

**.**...

### **Accelerator facilities at KIT**





### Example: start-to-end pulse optimization in linac (FLUTE)





### **Bayesian optimization algorithm transferred to EuXFEL**



Time to inject to KARA cut in half with automated tuning by BO algorithm <u>C. Xu et al., PhysRevAccelBeams.26.034601</u>

Emitted THz radiation at FLUTE optimized with parallel BO in simulation <u>C. Xu et al, IPAC'22-WEPOMS023</u>

Transfer of algorithm to EuXFEL to tune SASE emission <u>C. Xu et al, IPAC'23-THPL028</u>





#### **Bayesian Optimization**



GP model can be used to visualize the sensitivity of actuators with respect to an objective and assist operators

# First detailed comparison of BO and RL in a real accelerator

J. Kaiser, C. Xu et al, arxiv: 2306.03739

- Task: focus and position the electron beam
- Actuators: 3 quadrupole magnets + 2 corrector magnets
- Observation: beam image on the diagnostic screen





**Bayesian Optimization** 



# First detailed comparison of BO and RL in a real accelerator





How can machine learning help future light sources? - Andrea Santamaria Garcia



How can machine learning help future light sources? - Andrea Santamaria Garcia

#### Lattice agnostic RL $\rightarrow$ Generalizable RL





Oc = OCELOT (with space charge)

### Control of the microbunching instablity with RL





#### How can machine learning help future light sources? - Andrea Santamaria Garcia

### Control of the microbunching instablity with RL

#### Proposed control loop





#### Damping of transverse oscillations Proof-of-principle





# First RL algorithm online training and running on hardware in accelerators







# First RL algorithm online training and running on hardware in accelerators



- Agent: Vanilla PPO from Stable Baselines 3
- Actor & critic architecture: 8-16-1
- Reward: metric of the beam position (low as possible)
- Observation: last 8 BPM samples
- Strategy:
  - 1. Agent acts during 2048 turns (0.74 ms)
  - 2. Agent stops and is re-trained in a CPU (~2.6 s)
  - 3. New weights are sent to Versal board and agent starts again



NNs coded in Versal AIEOnly forwad pass

**Reinforcement Learning** 



How can machine learning help future light sources? - Andrea Santamaria Garcia

# First RL algorithm online training and running on hardware in accelerators



**Reinforcement Learning** 



L. Scomparin

#### First RL algorithm online training and running on hardware in accelerators



**Reinforcement Learning** 



FLS'23

#### **Outreach efforts**

#### Creation of the Collaboration on Reinforcement Learning for Autonomous Accelerators (RL4AA)

https://rl4aa.github.io/

- Kick-off with workshop organized at KIT Feb. 2022
  - https://indico.scc.kit.edu/event/3280/overview
  - Expert lectures on reinforcement learning
  - Real application to accelerator tutorials
  - Advanced discussion sessions
- Registration for Feb. 2023 open!
  - https://indico.scc.kit.edu/event/3746/

#### **ML tutorials**

- https://github.com/RL4AA/RL4AA23
- https://github.com/ansantam/2022-MT-ARD-ST3-ML-workshop
- https://github.com/aoeftiger/TUDa-NMAP-14









Technology

## Thank you for your attention! What questions do you have for me?



Karlsruhe Institute of Technology Institute for Beam Physics and

#### Dr. Andrea Santamaria Garcia Al4Accelerators team leader

andrea.santamaria@kit.edu https://twitter.com/ansantam https://www.linkedin.com/in/ansantam/ https://github.com/ansantam



(we are hiring!)