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Abstract

In J-PARC MR, there is a concern that electron cloud

instabilities may appear and limit the beam current at fu-

ture higher power operations. For the case, we have de-

veloped a wider-band beam position monitor by deforming

the electrode shapes. The modification of the electrode can

be done without significant enhancement of the beam cou-

pling impedance. For typical electrode shapes, we show the

coupling impedances as well as the frequency responses of

the electrodes.

INTRODUCTION
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Figure 1: Flow chart of the induced pulses at a BPM.

Stripline beam position monitors (BPMs) are widely

used for measurements of beam position signals in study

of beam instabilities. The electrode is placed inside of the

chamber. Figure 1 schematically shows the principle of the

working of the BPMs.

Based on two-dimensional theory, the frequency re-

sponse of the BPM is analytically given by the transfer

function F (ω) as [1]

F (ω) = iω

∫ 2l

c

0

1

2
k(

ct

2
)e−iωtdt =

iω

c

∫ l

0

k(z)e−i 2ω

c
zdz,

(1)

where i is imaginary unit, ω is angular frequency, k(z) is

the coupling function to the fields at point z, l is the elec-

trode length and the velocity of the beam is approximated

by the speed of light c.

For the electrode in a shape of rectangle, the transfer

function is calculated as

F (ω) = k0
(1 − e−iω 2l

c )

2
, (2)

by extracting the z-dependence from the coupling function

k(z) = k0. The distinctive feature of this function is that

the absolute value has sharp notches with its interval: fn =
nc/2l, where n is integer (see the red lines in Fig.2).

The origin of these notches can be qualitatively under-

stood as follows. As Fig.1 shows, when a beam arrives at

the front-end of the electrode (t = 0), the beam excites

two currents with opposite polarities. One current flows to

the downstream with the beam, while the other does to the

upstream side and enters the port1.

When the beam reaches the back-end of the electrode

(t = l/c), new currents with opposite polarities (the

dashed-pulse) are additionally excited there. The total sig-

nal to the port 2 is cancelled by superposing the currents

(the solid and the dashed pulses at t = l/c).

When successive pulse trains come with their interval

2l/c, the subsequent pulse (the solid pulse at 2l/c) com-

pensates the prior signal (the dashed pulse) crated by the

predecessor pulse as in the figure at t = 2l/c. Finally, all

beam-induced signals with the frequency : fn cannot be

detected at all outside the chamber.

THE IDEAL ELECTRODE SHAPE

To avoid the demerit of the rectangular electrode, no

pair of image currents should be generated by the leav-

ing pulse. It is enabled by narrowing the electrode to-

ward downstream and carefully reclining the electrode to

the chamber, to preserve the characteristic impedance Zc

of the electrode.

In 1970’s Linnecar suggested an exponential electrode

for better frequency characteristic [2]. When the coupling

function k(z) is given by

k(z) = k0e
−

az

l , (3)

the transfer function F (ω) is calculated as

F (ω) = k0
iωl(1 − e−a−i 2ωl

c )

c(a + i2ωl
c

)
, (4)

where a is a positive dimensionless parameter defining

the degree of the exponential tapering of the electrode.

The blues line in the left figure of Fig.2 shows the trans-

fer functions for the Linnecar’s exponential electrode with

a = 2.63 and l = 190 mm. We can find that the notches

appearing in the red line (rectangle electrode) diminish in

the blue line, while Linnecar’s exponential electrode theo-

retically keeps oscillating at high frequency as

F (ω) ∼
k0

2
(1 − e−a−i 2ωl

c ). (5)

As Eq.(1) shows, the transfer function F (ω) can be inter-

preted as the Fourier transform of the step function, which
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Figure 2: The theoretical (left) and the simulation (right)

results of the transfer function |F (ω)|.

exists only between zero to l, where the coupling function

k(z) plays a window function role [3]. From a mathemati-

cal point of view, the optimization of the electrode shapes is

simplified to the issue how to choose the window function.

Finally, we find that a polynomial function [4] :

k(z) = k0
(l − z)σ

lσ
, (6)

with σ = 2.63, is the best choice for the purpose. The

transfer function is given by

F (ω) = −
k0

2

e−i 2ωl

c (Γ[1 + σ] − Γ[1 + σ,−i 2ωl
c

])

(−i 2ωl
c

)σ
, (7)

where Γ(z) and Γ(a, z) are the Γ- and the incomplete Γ-

functions, respectively. Contrary to the exponential case,

the formula approximated by

F (ω) ∼
k0

2
(1 −

ei( πσ

2
−

2ωl

c
)Γ[1 + σ]

( 2ωl
c

)σ
), (8)

damps and approaches k0/2 at high frequency. Overall be-

havior of the result is shown in the black line in the left

figure of Fig.2. The frequency characteristic of the transfer

function becomes much flatter for the polynomial function.

The simulation is performed by CST Studio [5]. In this

simulation, four electrodes are placed 90 degree apart in the

chamber with a1 = 65 mm radius and 5 mm thickness. The

respective electrodes are sophisticatedly reclined in order

that Zc of the electrode preserves 50 Ω along the electrode.

In the simulations, the transfer function is obtained by di-

viding the Fourier transform of the beam-induced voltage

at the upstream port by that of the beam current. The blue,

the red and the black lines in the right figure of Fig.2 show

the results for the exponential, the rectangular and the poly-

nomial electrodes, respectively. As theoretically expected,

the amplitude fluctuation is most suppressed in the polyno-

mial results.

The transfer function F (ω) is obtained by the measure-

ment of S21 in the setup shown in Fig.3. The downstream

side of the chamber is terminated with the matched resistor.

One port of the Network Analyzer (NA) is connected to the

port at the entrance of the chamber, while the other port is

connected to the wider end of the electrode.

Network

Analyzer

Zc
port1

port2 (feed-through)

z

upstream downstream

Figure 3: A schematic of the setup for the measurement of

the transfer function.

In J-PARC MR [6], exponential electrodes with l = 306
mm are used for the intra-bunch feed-back system. Since

it was difficult to bend them exponentially as required for a

good impedance matching, we kept them straight as a flat

plate.

The left figure of Fig.4 shows the measurement results

of S21 for the exponential electrode. While the peak to

peak modulation is about 30 % below 1 GHz, it is drasti-

cally worsen at high frequency. The right figure of Fig.4

shows the simulation results with l = 280 mm. The blue

line shows the case that the electrode is put straight as a flat

plate, while the red line shows the one that the electrode is

precisely reclined to preserve Zc. The peak to peak mod-

ulation on the blue line is worsen to about 30 % below 1

GHz, apart from about 23 % on the red line.

π
Ω

Figure 4: Measured S21 (left) for the exponential electrode,

and simulation results (right).

From these results, the precise bent of the electrode is a

key issue to make maximum use of the merit of electrode

shapes, which is quite difficult in practice. Consequently,

we start with a simple shape and gradually increase its com-

plexity to improve the frequency performance.

THE TRANSFER FUNCTION OF

ELECTRODES TAPERED BY LINEAR

FUNCTIONS

The simplest shape next to the rectangle electrode is a

triangle. It requires no sophisticatedly bending to attain a

good impedance matching.

The coupling function of the triangle electrode is given
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by [7]

ktriangle(z) = k0
(l − z)

l
. (9)

Accordingly, the transfer function is calculated as

F (ω) =
k0

2

i(1 − i 2ωl
c

− e−i 2ωl

c )
2ωl
c

. (10)

The red line in the left figure of Fig.5 shows the theoretical

result of the triangle electrode with l = 280 mm. The blue

line shows the result for the exponential one, for reference.

Except the large overshoot at low frequency, the triangle

electrode has a better frequency characteristic compared

with that for the exponential electrode.

ω ρ
Ω

Figure 5: The theoretical (left) and the simulation (right)

results of the transfer functions.

By introducing one more complexity in the shape, this

overshoot effect can be mitigated. Let us replace the long,

straight sides of the triangle by a three-point polyline. This

deformation transforms the triangle to a concave pentagon.

The concave pentagon electrode needs to be bent only once

at the middle point of the polylines for a good impedance

matching. Thus, its fabrication and setup remain to be easy.

The coupling function is given by

kpentagon(z) =

{

k0(1 − (1−y0)z
x0

), for z ≤ x0,

−k0
y0(z−l)
(l−x0)

, for z > x0,
(11)

where x0 and y0 specify a middle point location. Theoreti-

cally, the optimal position of the middle point provides

x0 =
8.5

20
l, y0 =

7.5

20
. (12)

The theoretical transfer function of the concave pentagon

electrode is shown by the green line in the left figure of

Fig.5. The simulation results for all shapes of electrode

are shown in the right figure of Fig.5. The overshooting

effect in the triangle electrode is suppressed in the concave

pentagon electrode. Moreover, the frequency characteristic

of the concave pentagon (green) is surprisingly similar to

that of the exponential electrode (blue).

WORKING OF THE APRON PLATES

The signal strength in the simulation result (the right fig-

ure of Fig.5) starts to be declined beyond the first transverse

magnetic (TM) waveguide mode:

fc =
0.114

a1(= 65mm)
(≅ 1.76GHz). (13)

This is due to a large gap between the chamber wall

and the upstream end of the electrode. Some of the im-

age current running on the chamber surface before the elec-

trode jump to the electrode over this gap as a displacement

current. For short wavelength modes, this gap prevents a

smooth flow of the displacement current and thus the im-

age current running on the electrode loses some parts of

high frequency components.

By attaching a plate perpendicular to the upstream edge

of the plate (See the left picture of Fig.6. From hereon, we

call this plate “an apron”.), this gap for the image current

can be reduced. The right figure of Fig.6 shows the simula-

tion results with the apron for the triangle (red) electrode,

the exponential one (blue) and the concave pentagon one

(green). Comparing that with the right figure in Fig.5, we

find that the signal strength is maintained up to the second

TM mode :

fc =
0.262

a1
(≅ 4GHz for a1 = 65 mm). (14)

The apron plate is effective to sustain a signal strength up

to higher frequency as a chamber has a smaller radius [7].

Apron

ρ
Ω

Figure 6: A photo of the apron on the triangle electrodes

(left), and the simulation results (right) for l = 280 mm.

MEASUREMENTS OF THE TRANSFER

FUNCTIONS

Measurements are done by preparing for four types of

electrodes (the triangle and the concave pentagon elec-

trodes with and without the apron.). A schematic picture

of the setup is shown in Fig.3. The inner conductor is in-

stalled in the chambers with 134 φ, where the 306 mm long

four electrodes are housed. The inner conductor and the

chambers make a coaxial structure with Zc = 50 Ω. The

chamber is sandwiched between two conical tapered coax-

ial section to suppress reflection effects while keeping a

constant 50 Ω characteristic impedance for the NA opera-

tion.

The transmission coefficient S21 is measured with 4-port

Agilent Technologies ENA Series E5071C. The calibration

is done by 2-port electric calibration module 85092b [8].
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The measurement results are shown in Fig.7. The red

and the green lines show the results for the triangle and the

concave electrodes, respectively. The left and the right fig-

ures show the results without and with the apron, respec-

tively. The overshooting effect appearing in the red lines

diminishes in the green lines. As the right figure shows,

the apron is effective to suppress the signal fluctuations.

Figure 7: Measured S21 without (left) and with (right) the

apron.

We measured the impedance distribution along the elec-

trode by time domain reflectometry method, where the

down stream port on the electrodes are terminated by 50

Ω resistor, and the upstream port is connected to a Tek-

tronix DSA8200 Sampling Oscilloscope [9]. The measure-

ment results for the triangle (left) and the concave pen-

tagon(right) electrodes are shown in Fig.8. To the goal of

the excellent impedance matching, more significant efforts

are worthy to be made in the fabrication process. We ex-

pect that the gradual decline of the signal strength in the

right figure of Fig.7 will be recovered by improving the

impedance mismatch along the electrodes.

Ω

Figure 8: Measurement results of the impedance distri-

bution along the triangle (left) and the concave pentagon

(right) electrodes with (blue) and without (red) the apron.

IMPEDANCES OF THE ELECTRODES

Now, let us investigate the beam-coupling impedances

of the electrodes. The longitudinal impedance ZL is mea-

sured by connecting the second port of the NA to the exit of

the chambers both housing the electrodes and housing no

electrode (as a reference pipe). Both ends of all electrodes

are terminated by the matched resistors.

The measured S21 are converted to ZL by using the stan-

dard log-formula [10]:

ZL = −2Zc log
S21

S
(ref)
21

, (15)

where S21 and S
(ref)
21 are the transmission coefficients for

the device under test and for the reference pipe, respec-

tively.

At first, we theoretically derive the formula of ZL based

on the transmission line model. We assume port 1 and 2

are located at z = 0 and z = l, respectively. Equations are

given by

dV1

dz
= −iωL(z)I1 − iωM(z)Iinner, (16)

dI1

dz
= −iω

Linner

c2(L(z)Linner − M(z)2)
V1

+ iω
M(z)

c2(L(z)Linner − M2(z))
Vinner, (17)

dVinner

dz
= −iωLinnerIinner − iωM(z)I1, (18)

dIinner

dz
= iω

M(z)

c2(L(z)Linner − M(z)2)
V1

− iω
L(z)

c2(L(z)Linner − M(z)2)
Vinner, (19)

where L(z), V1 and I1 are the self-inductance, the volt-

age and the current of the electrode, respectively, Linner,

Vinner and Iinner are the self-inductance, the voltage and

the current of the inner conductor, respectively, and M(z)
is the mutual inductance between the inner conductor and

the electrode.

It is quite difficult to solve Eqs.(16)-(19) exactly. Let

us make the approximations to solve them : the coupling

between the inner conductor and the electrode is weak

(M2 ≪ LLinner), and regard M as a perturbation and

solve them iteratively. Finally, the transmission coefficient

S21 is approximately calculated, and ZL is given by

ZL =
2nNEω2

Zc

∫ l

0

dz′′
∫ z′′

0

dz′M(z′)M(z′′)ei 2ω

c
(z′

−z′′),

(20)

where nNE the number of the electrodes in the chamber (In

this description, the negative value of the imaginary part

corresponds to be inductive impedances. For comparison

with a simulation result, the sign is made opposite in the

red dashed line of Fig.9).

For the exponential electrode, the mutual inductance is

approximated as

M(z) ≅
Z0

2πc
log[

a1

a1 − ∆e−
a

l
z
], (21)

where ∆ is the distance between the electrode and the

chamber at z = 0. The difference of the electrode shapes
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is confined in the z-dependence of the logarithmic func-

tion, by which we expect that the impedances do not sig-

nificantly depend on the electrode shapes.

The theoretical (red) and the simulation (blue) results

for the exponential electrode are shown in the left figure

of Fig.9. The theoretical result shows that it is inductive,

and that the wake function behaves like the δ′-function, as

shown by the simulation result in the right figure.

Ω

Figure 9: The theoretical (red) and the simulation (blue)

results of ZL (left) for the exponential electrode (a = 2.63,

l = 280 mm), and the simulation result of the wake func-

tion (right). The solid and the dot lines show the real and

the imaginary parts of the impedance.

Here, let us investigate the impedance dependence on the

electrode shapes. The scaled picture of the simulation re-

sults below 1GHz are shown in Fig.10. The ZL is shown in

the upper figure. The ZT are shown in the lower figure, as

well. The left and the right figures show the results without

and with the apron, respectively. The red, the blue and the

green lines show the results for the triangle, the exponen-

tial and the concave pentagon electrodes, respectively. The

amount of the value of the impedances for all shapes is the

same order of magnitudes, as theoretically expected. More-

over, the simulation results suggest that the impedances do

not strongly depend on the existence of the aprons.

The measurement results of ZL are shown in Fig.11. The

left and the right figures show the results without and with

the apron, respectively. The impedances with the aprons

are enhanced compared to those without the aprons within

a factor or two, because the electrodes with the aprons

are more apart from the chamber wall than those without

them, violating impedance-matching (refer to Fig.8). Fig-

ure 10 suggests that this impedance enhancement should be

reduced by improving the impedance-mismatch along the

electrodes.

SUMMARY

The high frequency performance of the exponential elec-

trode in J-PARC MR (Fig.4) can be improved by replac-

ing it with the concave pentagon electrode with the apron

(Fig.7). The apron plate on the wider end of the electrode

helps to maintain the signal strength up to the second TM-

mode. The merit of the concave pentagon with the apron

is that, its fabrication is easier than that of the exponential

Ω Ω

Ω Ω

Figure 10: The simulation results of ZL (upper) and ZT

(lower) without (left) and with (right) the apron. The solid

and the dashed lines show the real and the imaginary parts

of the impedances, respectively.

Ω Ω

Figure 11: Measured ZL for the triangle (red) and the con-

cave (green) electrodes, respectively. The solid and the

dashed lines show the real and the imaginary parts of the

impedances, respectively.

electrode.

The simulation results suggest that the impedances do

not significantly depend on the electrode shapes, and

whether the aprons are attached on the electrodes. We ex-

pect that the significant efforts to improve the impedance-

mismatch along the electrodes will realize the better

frequency performance as well as the lower coupling

impedances.
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