

MADOCA II DATA COLLECTION FRAMEWORK FOR SPring-8
T. Matsumoto†, Y. Furukawa, Y. Hamada,

Japan Synchrotron Radiation Research Institute, Hyogo, 679-5198, Japan

Abstract
MADOCA II (Message and Database Oriented Architec-

ture II) is the next generation of the MADOCA control
framework and has been implemented in accelerator and
beamline control for the SPring-8 since 2014. In this paper,
we report on the recent evolution in MADOCA II for data
collection, which was missing in the past reports at
ICALEPCS [1, 2]. To improve the management flexibility,
we developed a data collection framework to manage var-
ious data collection types in SPring-8 with a unified
method. All of the data collection methods (polling, event
triggered type), data formats (such as point and waveform
data) and platforms (UNIX, Embedded, and Windows in-
cluding LabVIEW [3]) can be managed within the same
framework. We also developed a signal registration proce-
dure to facilitate the preparation for the data collection. In
MADOCA, we managed all the parameters used in the data
collections with an RDBMS, and requested the equipment
manager to fulfil a Signal Registration Table (SRT) to up-
date the data collection. However, this required an exten-
sive work owing to inconsistencies in the SRT and the iter-
ation of communications with the DB manager for the reg-
istration of the SRT into the RDBMS. In MADOCA II, we
facilitated the signal registration procedure with a prior test
of the data collection and a validity check in SRT with a
web-based user interface. We started to implement the
MADOCA II data collection into SPring-8 with 220 hosts
and have confirmed stable operation since April 2016.

INTRODUCTION
MADOCA is a distributed control framework developed

to control the SPring-8 accelerator and beamline. It has
been adopted for this operation since 1997 [4]. Though we
have experienced stable operation with MADOCA for
more than 15 years, we have developed the next generation
of MADOCA, called MADOCA II, which has been imple-
mented to include new functions to cope with current re-
quirements in the controls. MADOCA II has been adopted
into the SPring-8 and SACLA DAQ system since 2014 [5,
6]. The schematic view of messaging control in MADOCA
II is shown in Figure 1. MADOCA II performs text-based
messaging controls with SVOC sentence structure for dis-
tributed controls, similar to MADOCA. However, much
of the functionality has been implemented by introducing
ZeroMQ [7] and MessagePack [8] as core messaging ar-
chitectures. Flexibility in the messaging communication
was improved to handle the capability to attach variable
length data such as image data to the messages, and to add
support for the Windows platform. Fast data logging was

also archived by using NoSQL databases such as Redis [9]
and Cassandra [10].

Figure 1: Schematic view of the software framework for
messaging controls with MADOCA II.

At SPring-8, we operate data logging with about 500
hosts and 30 k signals. On average, about 9 k signals per
second are collected, where intervals of data collections for
signals vary from one second to 10 minutes. For the data
logging, we archive the data for each signal with the signal
name from the O/C in the SVOC command of MADOCA.
For example, the signal name is set to “sr_mag_ps_a/volt-
age” for the signal data in the voltage of a power supply for
a magnet in a storage ring.

Most of the data collections are operated with Poller/Col-
lector applications [11]. The Poller/Collector periodically
collects point data in several formats such as integers, or
statuses with bit information and floats, which are applied
to the data logging of vacuum pressure, temperature and
voltage in magnet power supplies and so on. However, we
have also encountered other data types in the data collec-
tion during the 20 years of operation at SPring-8. In a Linac
accelerator, we encountered event triggered data collec-
tions synchronized in time with the injection beams of a
different framework [11]. We also have other types of data
collections such as bunch current measurements and closed
orbit distortion (COD) in electron beams, which deal with
the structure of the data format.

The schematic view of the data collection at SPring-8 is
shown in Figure 2. We still use MADOCA for the data col-
lection. However, data logging is upgraded to MADOCA
II for high flexibility. Therefore, data collected with MA-
DOCA is sent to the streamer in MADOCA II. After pass-
ing the data into the streamer, the data is archived into the
NoSQL database through writers. These applications in

† matumot@spring8.or.jp

† matumot@spring8.or.jp

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL04

Software Technology Evolution
MOBPL04

39

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

MADOCA II data logging, which has already been re-
ported in the last ICALEPCS [2].

For the Poller/Collector, the poller application is used to
perform periodic data collection and a collector client ap-
plication is used to manage the operation of the data col-
lection with the messaging commands of MADOCA.
However, other data collections in Linac synchronized data
and COD data are performed separately. Therefore, the
management of these data collections is complicated and
lacks operational flexibility.

Figure 2: Data logging system at SPring-8.

Figure 3: Data logging system with MADOCA II.

To solve the problem in these data collections and to have
all systems controlled with MADOCA II, we developed a
new MADOCA II data collection as shown in Figure 3. In
the MADOCA II data collection, various data collection
methods in SPring-8 can be managed with the same frame-
work. Additionally, management of these data collections
can be unified through the messaging commands of MA-
DOCA II and the parameters in the RDBMS.

 In the MADOCA II data collection, we also aimed to
solve the elaborate problem of the registration of signal
configurations in the RDBMS. At SPring-8, we managed
all the parameters in the data collection with an RDBMS.
The parameters were signal name, equipment group, data
collection cycle, flag for off and decimation settings for
signals, alarm settings and so on. We setup the Signal Reg-
istration Table (SRT) with an excel file to manage these
parameters and asked the equipment manager to update the
information. However, the required time and cost was high
due to the difficulties in managing several parameters in
SRT and the iterative communication process with the DB
manager for the registration, due to inconsistencies in SRT.

We also encountered other issues in the data collection for
MADOCA as shown below.

 Data collections were not supported for LabVIEW
[12] and the Windows OS.

 The data collection operated with the group unit only
in the Poller/Collector.

In the following sections, we report on the framework

developed in the MADOCA II data collection to solve
these problems. After that, we describe the implementation
of the data collections in SPring-8.

MADOCA II DATA COLLECTION
FRAMEWORK

In this section, we report on the MADOCA II data col-

lection framework to resolve the problems described in the
previous section. For the management of the data collec-
tion operations, we report the issue in the next section.

Signal Registration Procedure
The flow of the signal registration procedure is shown in

Figure 4. The procedure is roughly the same as MADOCA.
To facilitate this procedure, we added a web interface for
the validity check of the SRT as well as to test the data col-
lections in MADOCA II. The web interface for SRT is
shown in Figure 5. We describe each step in the signal reg-
istration below.

 Generation of a template for SRT

To retain consistency for parameters in the RDBMS, we
first generate a template for the SRT from the RDBMS.
The equipment manager requests that the target hosts for
updating the data collection, then the web interface of SRT
generates the template for the corresponding hosts. SRT is
composed of several sheets of configurations of signals,
status bit information, alarm settings and so on. The web
interface was built with ruby on rails [13]. Since we used
Python to manage the database access with the RDBMS,
we developed Python scripts for the management of the
RDBMS and these scripts were also utilized inside the web
interface.

 Update of SRT

After the generation of the template, the equipment man-
ager edits SRT using the web interface. The update can be
performed in a similar way as in an excel file. To add new
signals in the data collection, we need to update SRT. To
achieve consistency among new signals in the configura-
tion table (config.tbl), used in the Equipment Manager
(EM), we can input the config.tbl into the web interface
and reflect the new signals in config.tbl to update SRT. Af-
ter this procedure, the equipment manager updates the con-
tents of SRT, if necessary. Since SRT contains a lot of in-
formation, we often find inconsistencies in the values in
SRT. With the web interface, these inconsistencies can be
clearly visualized. Therefore, the equipment manager can

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL04

MOBPL04
40

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

easily obtain consistency in SRT through corrections made
in the web interface.

 Test of data collection

Even if SRT is prepared to have format consistency, the
data collection itself may not work as expected because
some parameters may be not appropriate for the operation.
To confirm the validity of SRT, we ask the equipment man-
ager to test the data collection in the test system. For the
test, parameters in SRT are not registered in the RDBMS
as during operation. However, we can perform the test by
using a datacol file generated from SRT, which contains a
signal list and related settings for the data collection. We
also setup a NoSQL database for the test. Additionally, we
setup tools for the test to view and browse the data in a web
server similar to the capabilities available during operation.
Therefore, we could easily test the data collection inde-
pendently with the operation and it was very useful to have
a valid data collection. For example, we could perform a
test data collection in a machine study without updating the
data collection for the operation in production.

 Registration of SRT into the RDBMS

After confirming the contents in SRT with the procedures

above, the equipment manager notifies the DB manager

that the SRT is prepared and ready by using a request but-

ton in the web interface. To reduce manual intervention, it
may be possible to perform the signal registration with an
automated procedure. However, the requested SRT may
contain unexpected patterns such as new 10 k signals. To
guarantee the stable operation of SPring-8, a DB manager
checks the consistency in the SRT before the registration,
then registers the SRT into the RDBMS if there are no
problems with the contents.

 Start of the data collection

After the signal registration into the RDBMS, the equip-
ment manager generates a datacol file for the operation
from the RDBMS, then starts the data collection.

 Previously, we sometimes required an iterative process
to communicate between the equipment manager and the
DB manager to fix inconsistencies in SRT. With the de-
veloped procedure in MADOCA II, we can facilitate the
preparation of valid SRT data thanks to the web interface
for modifying SRT and the test system for the data collec-
tion. We can then proceed to the signal registration proce-
dure smoothly, as well as reduce the time and cost of the
signal registration.

Figure 4: Signal registration procedure in MADOCA II

data collection.

Figure 5: Web interface for editing SRT.

MADOCA II Data Collection
The main purpose of the MADOCA II data collection is

to handle various data collections within the same frame-
work to improve management flexibility. To achieve this
goal, we developed the framework to implement the fol-
lowing features.

 Unification of management tables in RDBMS

In MADOCA, management tables in the RDBMS were
different among the periodic type, event triggered type and
the data collections with various data formats. Therefore,
the management of these became complicated. To monitor
the collections of signal data for different data types, users
also require elaborate data analysis. To solve these prob-
lems, management tables were unified in MADOCA II to
DATACOL_INF and SIG_DATACOL_INF.
DATACOL_INF manages the information for each data
collection, such as data collection type and managed hosts.
 SIG_DATACOL_INF manages the information for each
signal, such as flags for off and decimation. Based on these
unified tables, the DB manager can facilitate the manage-
ment of the data collection. Users also deserve an easy
analysis of the correlations among different types of signal
data with a unified method.

 Support of various data collection methods

The unification of various data collections was also
adopted for the MADOCA II data collection processes.

Figure 6 shows the case handling the data collections of
the periodic type and event triggered type with the same

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL04

Software Technology Evolution
MOBPL04

41

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

process. In an EM base data collector (EMDC), data col-
lection process collects the signal data from devices using
functions prepared for an EM. Then, the data collected are
sent to the streamer and written to a NoSQL logging data-
base. The operation of the data collection can be managed
with the message commands of MADOCA II from a re-
mote Graphical User Interface (GUI). In the data collection
process, threads are created that generate timing signals
which interrupt and trigger the collection of signal data.
The timing of the threads is generated with an internal
timer for the data collection within a periodic cycle. In the
case of an event-triggered data collection, the timing of the
threads is generated with an interrupted function triggered
with the event.

 In the case of the data collection with EMDC, the appli-
cation needs to be written in the C programming language.
In fact, we have found it difficult to implement data collec-
tions in other languages. To apply data collections for var-
ious program interfaces, we developed data collections
with a messaging based data collector (MSDC) as shown
in Figure 7. In the case of MSDC, the data collection pro-
cess collects signals data from other EMs through messag-
ing. Since an EM can be flexibly developed with multiple
languages such as Python and LabVIEW for MADOCA II
[14], we can manage the data collections with various types
of applications. MSDC can perform data collection within
a periodical cycle. It is also possible to drive the data col-
lection for MSDC via an external request with the message
commands of MADOCA II. To perform the data collection
with multiple signals requires time if we send messages for
each piece of signal data. To perform fast data collection
for multiple signals, we attached and packed data for mul-
tiple signals in a message which is then used for the data
collection.

 In the case of manual COD data collection, signal data
was prepared in a GUI and we wanted to reflect the signal
data in the data logging. To cope with such demands, we
developed MSDC as shown in Figure 8. In this case,
MSDC performs data collection by receiving messaging
requests from remote client applications. Here, signal data
is attached to the requested message.

 Various data formats in data collections

To treat data collections in various data formats such as
waveform data in the same framework, we utilized Mes-
sagePack to serialize the data and store the serialized data
as is in a NoSQL database. Since MessagePack has a self-
described data format, we can treat the data in various for-
mats with a unified method. For each data collection, we
defined the data format used with MessagePack and ap-
plied it to the data collection.

 Support of a multi-platform environment

At SPring-8, we have required data collections to be sup-
ported on multiple platforms such as Solaris x86, Linux,
ARM/Linux and Windows. In the MADOCA II data col-
lection, the applications do not rely on the database library
directly because the data collected is sent to a messaging-
based streamer based on ZeroMQ and MessagePack. We

also managed the settings of the data collection with a
datacol file generated from the RDBMS. With these proce-
dures, we were able to flexibly manage data collections un-
der multiple platforms.

Figure 6: Configuration of the MADOCA II data collection
processes with EMDC. EMDC can serve as an event trig-
gered type (EMDC (Event)) or a periodic type (EMDC
(Poller1, Poller2)). Here, EMDC (Poller1) and EMDC
(Poller2)) have different data collection cycles.

Figure 7: Configuration of MADOCA II data collection
processes with MSDC. MSDC fetches signal data from an
EM with the messaging commands of MADOCA II.

Figure 8: Configuration of MADOCA II data collection
processes with MSDC. In this case, the client application
prepares signals data and sends a message with signal data
to MSDC.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL04

MOBPL04
42

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

IMPLEMENTATION OF MADOCA II
DATA COLLECTION INTO SPring-8

 The developed MADOCA II data collection framework
described in the previous section has been partially imple-
mented into the control system for the SPring-8 accelerator
and beamline since April 2016. Currently MADOCA II
data collection is applied for 11 equipment groups, 220
hosts and 277 data collection processes and used for Solaris
x86, Linux, ARM/Linux, and Windows OS computers. For
the signal registration procedure, we introduced test data
collection which proved to be very useful in the preparation
of the data collections. The web interface for editing SRT
is still in the test phase, and an excel file was used instead.

Applications

We implemented MADOCA II data collections for appli-
cations with periodic and event triggered types.

Periodic data collection was applied to temperature and
humidity measurements at a storage ring and status at a
beamline PLC with Armadillo, for example. MADOCA II
data collection was also applied to NewSUBARU in the
same campus as SPring-8. Here, we applied data collection
to monitor equipment with LabVIEW on the Windows OS.
To achieve data collection with MADOCA II, we used the
MADOCA II-LabVIEW interface to build an EM and
MSDC shown in Figure 7. To perform 169 signals per sec-
ond, multiple signal data was attached in one message for
the first data collection.
 In the case of data logging of DCCT integrated charge and
DCCT lifetime, we needed to use DCCT current for the
calculation of this data. In order to implement the data log-
ging, we utilized MSDC as shown in Figure 8. Here, client
applications fetch DCCT current data from the NoSQL da-
tabase and calculated signal data is sent to MSDC via mes-
saging by attaching the signal data.

Examples of the application of the MADOCA II data col-
lection are also reported in other proceedings in this
ICALEPCS [15].

Data Collection Operations Management
The management of operations for MADOCA II data col-

lection is designed to have operational flexibility and easy
to perform troubleshooting.

Figure 9 shows the schematic view of the management of
the MADOCA II data collections. To manage the data col-
lections operated in multiple hosts, we setup a data collec-
tion manager (DC manager) in an operator workstation.
The DC manager was built with PyQt [16]. With the DC
manager, we were able to perform administrative opera-
tions, such as the start and stop of the data collections in an
equipment group unit, host and application. The DC man-
ager also monitors the statuses of the data collection. These
statuses are flexibly obtained from the message commands
of MADOCA II and the parameters in the RDBMS. The
statuses obtained can be tracked in the DC manager and

also in the web portal in order to support external monitor-
ing.
 Figure 10 shows the DC manager managed by each equip-
ment group. Here, we can watch the operation number of
the data collection, as well as the host and failure counts
for several cases, such as disconnection in the messaging,
and stopped data collections. Since these counts in the fail-
ure are categorized for each case, it is useful for immedi-
ately understanding the cause of the issue. If counts with a
red cell are displayed, the user can fix the issue by pushing
a button on the right side. If counts with a brown cell are
displayed, the user needs to ask the control experts to di-
rectly fix these issues. The detailed operations for each
equipment group can be performed with a subwindow
which appears when pushing a button in the purple cell on
the left side. We can also operate a host and an application,
and an example for the DC manager is shown in Figure 11.
 Although the data collection Poller/Collector is still im-
plemented in MADOCA, we updated the Poller/Collector
to manage the operation with the message commands of
MADOCA II and the management was also included in the
DC manager. Thus, most of the data collections at SPring-
8 could be flexibly managed with the DC manager and con-
sequently, we were able to facilitate the operation and the
troubleshooting of data collections at SPring-8.

Stability
 After having started the operation of the MADOCA II data
collection in April 2016, we have not encountered any is-
sues with the operational stability of the data collection ap-
plication itself. However, major issues occurred a few
times with the data logging in Cassandra. In these situa-
tions, Cassandra nodes became unstable when the COD
data was sent to the Cassandra nodes while its load was
high due to the compaction process. The data size of the
COD was 28 KB and collected with 10 Hz. Then, the data
size became 24 GB per day. In the operation of Cassandra,
we assigned a row key for signal data for one day and as a
result, the managed data size exceeded the preferred data
size for a row key of 10 to 20 MB. Therefore, we updated
the row key to one per minute for COD data and reduced
the collecting cycle to 1 Hz. After the fix, we encountered
consistent stable operation in the MADOCA II data log-
ging system.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL04

Software Technology Evolution
MOBPL04

43

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 9: Management of the operation of the MADOCA
II data collection.

Figure 10: GUI for the MADOCA II data collection for the
management of the operation of an equipment group unit.

Figure 11: GUI for the MADOCA II data collection for the
management of the operation with a host unit and the data
collection process.

SUMMARY

In this paper, we reported on the developed MADOCA
II data collection framework. The main purpose of MA-
DOCA II data collection is to manage various data collec-
tions for SPring-8 within a unified framework. We

achieved the goal by developing various data collection
methods. All of the data collection methods (polling, event
triggered type), various data formats, and multiple plat-
forms can be flexibly managed within the same framework.

 We also developed a web interface to facilitate the signal
registration procedure, as well as a test system for the data
collection. Furthermore, the management of the data col-
lections was facilitated by leveraging the DC manager.
With these developments, we obtained flexible manage-
ment of the data collection and the maintenance costs have
been reduced.

We implemented MADOCA II data collections into
SPring-8 with 220 hosts, which has been operating with
stability since April 2016.

ACKNOWLEDGEMENT
We would like to thank our colleagues in the Control

Group in the Light Source Division, and the Information-
technology Promotion Group in the Information-technol-
ogy Promotion Division for useful discussions and sugges-
tions on MADOCA II.

REFERENCES
[1] T. Matsumoto et al., “Next-generation MADOCA for

SPring-8 control framework”, in Proc. ICALEPCS’13, San
Francisco, USA, 2013, p.944.

[2] A. Yamashita et al., “MADOCA II data logging system us-
ing NoSQL database for SPring-8”, in Proc. ICALEPCS’15,
Melbourne, Australia, 2015, p.648.

[3] National Instruments, http://www.ni.com//labview

[4] R. Tanaka et al., “The first operation of control system at the
SPring-8 storage ring”, in Proc. ICALEPCS’97, Beijing,
China, 1997, p.1.

[5] K. Okada et al., “Upgrade of SACLA DAQ system adapts to
multi-beamline operation”, in Proc. PCaPAC’14, Karls-
ruhe, Germany, 2014, p. 22.

[6] T. Matsumoto et al.,” Multi-host message routing in MA-
DOCA II”, in Proc. ICALEPCS’15, Melbourne, Australia,
2015, p. 954.

[7] ZeroMQ, http://zeromq.org/.

[8] MessagePack, http://msgpack.org/.

[9] Redis, https://redis.io/.

[10] Cassandra, http://cassandra.apache.org/.

[11] A. Taketani et al., “Data Acquisition System with Database
at the Storage Ring”, in Proc. ICALEPCS’97, Beijing,
China (1997), p.585

[12] T. Masuda et al., “Event-synchronized data acquisition sys-
tem for beam position monitors of SPring-8 linac”, Nucl.
Instrum. Methods A 545 (2005), p.415.

[13] Ruby On Rails, http://rubyonrails.org/

[14] T. Matsumoto et al., “LabVIEW interface for MADOCA II
with key-value stores in messages”, in Proc.
ICALEPCS’15, Melbourne, Australia, 2015, p.669.

[15] A. Kiyomichi et al.,” MADOCA to EPICS gateway”,
ICALEPCS’17, Barcelona, Spain, this conference.

[16] River Bank Computing, https://riverbankcompu-
ting.com/software/pyqt/.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL04

MOBPL04
44

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

