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Due to the massive parallel operation modes at the GSI
£ accelerators, a lot of accelerator setup and re-adjustment has
= to be made during a beam time. This is typically done man-
£ ually and is very time-consuming. With the FAIR project
= the complexity of the facility increases furthermore and for
8 eﬂimency reasons it is recommended to establish a high
2 level of automation. Modern Accelerator Control Systems
§ allow a fast access to both, accelerator settings and beam
£ diagnostics data. This provides the opportunity together
$= with the fast-switching magnets in GSI-beamlines to im-
E plement evolutionary algorithms for automated adjustment.
ZA lightweight python interface to CERN Front-End Soft-
E ware Architecture (FESA) gave the opportunity to try this
§ novel idea, fast and easy at the CRYRING@ESR injector.
.z Furthermore, the python interface facilitates the work flow
% significantly as the evolutionary algorithms python package
£ DEAP could be used. DEAP has been applied already in
‘S external optimization studies with particle tracking codes [1].
2 The first results and gained experience of an automatized
& optimization at the CRYRING @ESR injector are presented
Zhere.

INTRODUCTION

FAIR - the Facility for Antiproton and Ion Research — will
¢ constitute an international center of heavy ion accelerators
g that will drive forefront heavy ion and antimatter research.
2 The goal of the FAIR facility is to provide antiproton and ion
>~ beams of unprecedented intensities as well as qualities. As a
8 special feature, the facility will provide a broad range of high-
% intensity ion, antiproton and rare-isotope beams parallel to
S multiple experiments.

The High Energy Beam Transport System of FAIR, with
a total length of more than 2350 meters, forms a complex
system connecting seven accelerator- and storage rings, the
- experiment caves, beam dumps, stripping stations, the an-
e tiproton target and the Super Fragment Separator. The va-
— riety of beams to be transported is considerable, ranging
Z from slow extracted beams with long spills of up to 100 s
2 to short intense bunches with lengths of a few nanoseconds
gand momentum spreads of up to +1%. The range of beam
~ intensity covers more than six orders of magnitude [2]. The
£ complexity of the FAIR facility demands a high level of
-£ automation for future operation, because otherwise the an-
E ticipated manpower requirements for operators would be
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Figure 1: The settings of the steerers and electrostatic
quadrupoles between ion source and Farady Cup after the
dipol of CRYRING@ESR injector at GSI have been autom-
atized optimized with evolutionary algorithm to maximize
the beam transmission.

excessive, as shown in [3]. Modern accelerator control sys-
tems allow a fast access to both, accelerator settings and
beam diagnostics data. This provides the opportunity to im-
plement algorithms for an automated adjustment. Therefore,
the Parameter Evolution Project (PEP) has been launched
for automatized online parameter optimization in beam lines.
An automatized machine based optimization using genetic
algorithms for a storage ring has been already successfully
demonstrated experimentally [4].

In the frame of the Swedish in-kind contribution to the
FAIR project the storage ring CRYRING@ESR is planned
to be used for experiments with low-energy ions and antipro-
tons. The ring is already installed in the existing GSI target
hall and commissioning has started in 2015 [5, 6]. Since
CRYRING@ESR has its own local injector it can be used
stand-alone for testing novel technical developments like
automatized configuration of beam line devices. Figure 1
shows the part of the CRYRING@ESR injector (from ion
source to Faraday Cup), which has been used for testing
automatized online evolutionary algorithm optimization. A
semi-automatized optimization has been already preformed
at the CRYRING in Sweden [7].

PYTHON INTERFACE TO FESA AND LSA

Currently, most of the GSI facility is undergoing heavy
construction work or large up-grade measure and is therefore
not available for beam time until 2018. An exception is the
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CRYRING@ESR and its local injector beam line. Since the
CRYRING@ESR has just recently been installed at GSI, the
infrastructure follows the guidelines of a modern accelerator
control system and allows fast access to both accelerator
settings and beam diagnostics data. GSI has selected the
Front-End Software Architecture (FESA) to operate acceler-
ator devices and the LHC Software Architecture (LSA) for
the new settings management system. FESA is a comprehen-
sive framework used to design, develop and deploy front-end
device software. It abstracts from hardware-specific differ-
ences by allowing for the creation of device models where
the equipment’s interface towards the control system is rep-
resented as a consistent set of properties. LSA is a settings
management framework that supports offline generation of
machine settings, sending these settings to all involved de-
vices and programming the schedule of the timing system.
Settings calculation is based on a physics model for accel-
erator optics (twiss, machine layout), parameter space and
overall relations between equipment settings and beam pa-
rameters. The LSA GUI applications support the operators
in setting, optimizing and monitoring the accelerators for
parallel beam operation. Both FESA and LSA originated at
CERN and are now developed further in collaboration with
GSI [8,9].

Development of new operation techniques to increase
the accelerator performance is carried out during dedicated
machine development time, often by experienced machine
physicists. During machine experiments, the machine physi-
cists usually operate the accelerators in a non-standard way,
including non-save operation. Often, the available GUI ap-
plications do not support or even prevent such operation
modes. In order to ensure success for the machine experi-
ment, new functionality must be added for a short period of
use. In the physics community, Python is a widespread com-
puter language as it allows programmers to express ideas
in a shorter syntax than C++ or Java. A Python interface
to FESA/LSA would significantly facilitate the work flow
for the machine physicists. As an example, during machine
development time one could easily access measurement data
that is not available on the Java GUI in the required form.
For the automatized project, the evolutionary algorithms
Python package DEAP has been used [10]. DEAP has been
applied already in external optimization studies with particle
tracking codes. A lightweight Python interface to FESA for
the development of novel ideas, fast and easy, is available
at GSI. The Python module provides access to FESA de-
vices including reading and writing data. The downside of
FESA-Python access is that it is bypassing the settings man-
agement of LSA, including the physics model and settings
database. A Python bridge to LSA would enable the use of
the same framework as in an accelerator simulation code.
One would change during the optimization global physics
parameters like tune or magnet strength and not, as with
the FESA-interface, local magnet currents. Furthermore,
the history of settings during optimization would be acces-
sible. A first test bridge to allow for the modification of
physics parameters through LSA with Py4J as been imple-
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mented recently. Py4J enables Python programs running in
a Python interpreter to dynamically access Java objects in a
Java Virtual Machine [11].

OPTIMIZATION ALGORITHMS

As a result of the promising GA optimization simula-
tion outcome of the multi-turn injection presented in [1] the
Parameter Evolution Project (PEP) has been launched for
automatized online parameter optimization in beam lines.
The aim of the project is to identify a fast and reliable evo-
lutionary optimization. The genetic algorithms, which is
inspired by natural evolution and particle swarm optimiza-
tion, inspired by movement of organisms in a bird flock or
fish school, are widespread evolutionary algorithm. To over-
come the evolutionary optimization slowness in the simula-
tion (many different parameter settings need to be evaluated),
parallel computing techniques are used. For an automatic op-
timization of real machine this advantage is not available. On
the other hand an automatized configuration would instantly
adapt to errors sensitive to the adjustment parameters as well
as other technical influences. An automatic optimization
of the transmission is maybe feasibly if a pre-conditioned
initial generation, a smaller number of individuals and gen-
erations can be used to shorten the optimization time. Very
important for this kind of an automatic optimization is a
fast reaction of the beam line devices as well as a fast and
accurate beam diagnostic. For a short optimization within a
few minutes a single cycle of setting beam line parameters
and reading out detector values should not be longer than
two seconds.

Genetic Algorithms

Genetic algorithms (GA) search for solutions using tech-
niques such as selection, mutation and crossover. By em-
ploying a wide range of different algorithms, GA are very
flexible and can be adapted to a large range of different
problems.

In GA terminology, a solution vector is called an individ-
ual and represents a set of variables; one variable is a gene.
A group of individuals form a population, the following child
populations are counted in generations. The first popula-
tion is created randomly. The crossover operator exchanges
variables between two individuals - the parents - to discover
with their offspring promising areas in the solution space
(exploration). For the optimization within a promising area,
the mutation operator changes randomly the characteristics
of individuals on the gene level (exploitation). Reproduc-
tion of individuals for the next generation involves selection.
The fitness of an individual reflects how well an individual
is adapted to the optimization problem and determines the
probability of its survival for the next generation. The fitness
is evaluated by an objective function, by a simulation code
or by a real running system. During the single-objective
optimization the most promising individuals are chosen to
create the next generation. By allowing individuals with
poor fitness to take part in the creation process the popula-
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E tion is prevented to be dominated by a single individual. The
g most popular techniques are proportional selection, ranking
£ and tournament selection [12-14].

2 A careful choice of the algorithm and operator is
~ necessary to get the best performance of GA algorithms.
£ The optimal choice of the offspring production probability
£ through crossover or mutation is important for a proper
6 balance between exploration and exploitation. The mutation
= operators are mostly used to explore, which is preferred
%at beginning of the search process. On the other hand, at
E'the end of search process more exploitation through the
= crossover operators is needed to ensure convergence of the
§ population. According to these facts, an incorrect produc-
5 tion probability can lead to local optimum convergence.

ub

Farticle Swarm Optimization

The initial inspiration for the Particle Swarm optimization
(PSO) came form the "graceful but unpredictable choreog-
raphy of a bird flock". The key to the swarm success liens
in social influence and learning. Each individual’s behavior
is influenced by its own personal experience and the social
standard [14]. Within a swarm, each individual refers to a

« point in the variable space. It is updated by adding a veloc-

-

work must maintain attribution

h

= ity depending on the personal experience and the socially
< swarm influenced. The “nostalgia” in the individual tends to
% return to a place it encountered in the past that best fulfilled
2 the objectives reflected by the personal best pbest. Simulta-
% neous, the individuals seek to attain publicized knowledge
zor social norms, reflected by the best position ever for the
< entire swarm gbest. The movements of the swarm a guide
Eby improved positions, which are updated during the opti-
& mization. Including in addition stochastic elements in the
%algorithm allows to search widely and hopefully finding a
2 satisfactory solution.

SIMULATION

The CRYRING@ESR injector model has been imple-
O mented in the particle tracking code pyORBIT - the python
£ implementation of ORBIT (Objective Ring Beam Injection
8 and Tracking) [15]. For the GA optimization the Distributed
éEvolutionary Algorithms in Python (DEAP) together
%With pyORBIT has been used. DEAP includes evolution
< strategies, multi-objective optimization, and allows the
g development of new genetic algorithms. DEAP decouples
=) . .

2 the GA operators like crossover from the evolutionary
%algorithms, which allows for example to easily exchange
g the selection operator and leave the remaining algorithm
zunchanged. The implantation of PSO algorithms is also easy
Epossible. Simulations indicated the (¢ + A)-evolutionary
§algorithm from the DEAP python package would be the
« perfect candidate for a rapid automatic optimization. In
= the (u + A)-algorithms as first step the individual fitness of
S u-individuals are evaluated. u is the population size and A
E the offspring’s size. Secondly, the evolutionary loop begins
%‘) by producing A < u-offspring’s from the population through
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crossover and mutation. The offspring’s are then evaluated
and the next generations population is selected from both
the offspring’s and the current population. Finally, when
a given number of generations has been evaluated, the
algorithm returns the final population including the best
solution [10]. In simulation the (u + A)-algorithm could
sufficient optimize the transmission of a beam line with four
quadrupoles after 10 generations using a small population
of 100 individuals and offspring size of 50, presented in
Figure 2. Assuming a single beam line cycle is two seconds
long, an automatic optimization would last 15 minutes.

100 -
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| | |
0 10 20 30 40

Optimization time in minutes

Figure 2: Simulated transmission evolution with the (u +
A)-algorithm for different population sizes for a beam line
with four quadrupoles. It has been assumed a single beam
line cycle is two seconds long.

EXPERIMENT

The aim of the automatized optimization was to maxi-
mize the beam transmission through the beam line using the
python package DEAP (e.g. minimization of particle loss
along beam line). In the time of machine experiment of one
week the require short python syntax has be implemented
and improved by few machine physicist without support by
the FESA/LSA development team. The DEAP genetic algo-
rithm has altered parameters on which the beam transmission
depends to optimize the transmission. The algorithm allows
independent variation of the steerer strengths and electro-
static quadrupoles voltages, in total nine different parameters.
The 90°-Dipole shown in Figure 1 has been excluded from
the genetic algorithm optimization due to is low transmis-
sion influence. The beam current has been measured at the
current transformer behind the ion source and the Faraday
cup after the dipole. Unfortunately, due to lack of time the
current transformer has not been calibrated. Still without
calibration the measurements from the current transformer
could be used as reference in the transmission optimization
process. Because of the slow response of the electrostatic
devices, a holding period of five seconds before the read-
out of the beam diagnostic devices has been included. The
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Figure 3: Evolution of the population fitness represented
through beam current along generations. As the next pop-
ulation is selected from both the offspring’s and current
population the number of fitter individuals grows with gen-
erations.

slow response of the CRYRING@ESR injector electrostatic
quadrupoles of a few seconds is a disadvantage for testing
evolutionary algorithm optimization. An enhancement of
electrostatic devices response is maybe possible in the future.
The result of the first successful evolutionary algorithm’s op-
timization performed at GSI is presented in Figures 3 and 4.
The population evolution has been limited to five generation
in order not to exceed an optimization time of 30 minutes.
Fortunately, during the optimization beam current fluctua-
tion from the CRYRING@ESR source has been low. Even
in the first generation a similar transmission as with a manual
optimization could be reached, since the parameter space of
the first generation has been limited to +£10% of the known
optimal settings. As the next population is selected from
both the offspring’s and current population the number of
fitter individuals grows with generations. Nevertheless, the
generated and evaluated offspring covers a large parameter
space indicated through different beam currents.

CONCLUSION AND OUTLOOK

As a result of the promising simulation outcome of op-
timizing the multi-turn injection as well as beam lines, the
PEP Project has been launched. The first automatic PEP ver-
sion at the CRYRING@ESR injector has been implemented
and tested. A good transmission could be reached in half
an hour of optimization time. Still, the PEP Project is at
its beginning and many improvements as well as detailed
studies have to be made. The influence of population, gen-
eration size, crossover and mutation should be studied as
well as other genetic algorithms, particle swarm algorithms
or machine learning algorithms should be tried. Before the
parameter space can be expanded, some trigger must be in-
cluded like *measurement failed and has to be repeated’ and
’Set value of devices have been reached’. Crucial for the
transmission through the RFQ is an optimization of beam

Experiment Control

ICALEPCS2017, Barcelona, Spain ~ JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2017-THPHA196

— 1.1
L1.0 pestmmomios camonan aan. o el BB, oS BmE® © ofied G0 o
o, e  Current Transformer
0.9 , ‘ ‘
'<_E'8 | o Offsprings
= 1st 2nd 3rd 4th
JE L]
(0] 6 * ° o o ® oo o
t ° ° ° ° ° ] )
> L] . 'Y
9 o
24 .
[6) . . e® °
> . . : ) o e
© 2 Jee e " e %, % e et d . .
© K . . ] o ® .
e e o ° °
0 R TR I YT SR A I ! .

Population generation

Figure 4: The offspring’s fitness represented through beam
current along generations. Only the best offspring’s replace
parents in the next population. The measurements from the
uncalibrated current transformer are in arbitrary units, still
show the low ion source fluctuations.

size as well as position and must therefore be included. For
the GSI beam time in 2018 it is planned to test PEP at the
transfer channel to SIS18 for optimizing the injection. A
python bridge to LSA would simplify the development of
new operation techniques. Therefore first Java-python bridge
to LSA with Py4J as been implement recently.
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