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Abstract

Data indexed by time is continuously collected from instru-

ments, environment and users. Samples are recorded from

sensors or software components at specific times, starting as

simple numbers and increasing in complexity as associated

values accrue e.g. status and acquisition times. A sample

is more than a triple and evolves into a document. Besides

variance, the volume and veracity also increase and the time

series database (TSDB) has to process hundreds of GB/day.

Also, users performing analyses have ever increasing de-

mands e.g. in <10s plot all target coordinates over 24h of 64

radio telescope dishes, recorded at 1 Hz. Besides the many

short term queries, trend analyses over long periods and in

depth enquiries by specialists around past events e.g. critical

hardware failure or scientific discovery, are performed. This

paper discusses the solution used for the MeerKAT radio

telescope under construction by SKA SA in South Africa.

System architecture and performance characteristics of the

developed TSDB are explained. We demonstrate how we

broke the mould of using general purpose database tech-

nologies to build a TSDB by rather utilising technologies

employed in distributed file storage.

OVERVIEW

This paper describes the updated Katstore [1], the stor-

age system developed to store the values, status and other

information about sensors in the MeerKAT [2] Control And

Monitoring (CAM) system [3]. Sensors and the CAM sys-

tem are described in more depth in the Data Acquisition

section.

Software components in CAM will send data points

(samples) to Katstore to save and make available for ana-

lysis. All the samples received by Katstore are keyed on

time and sensor name. This makes Katstore a time series

database (TSDB); it is purposely built to have a fixed index

on time. The data in Katstore is immutable and only grows

over time, no update on a sample is allowed. It can be seen as

an append-only database and samples do not need to arrive

in chronological order.

For flexibility and ease of implementation, the samples

are packed as JavaScript Object Notation (JSON) [4] objects

by the software components that collected the samples. Any

valid JSON is accepted. Katstore only requires that each

sample contains the keys name and time, where name is

the sensor name and time is the time in Coordinated Uni-

versal Time (UTC). The sample structure is discussed in

the Samples section. These semi-structured samples, as

JSON objects, are generally referred to as a document in

database systems. Document storage has been popularised
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in recent years with the NoSQL movement, with document

orientated databases such as CouchDB, Elasticsearch, and

MongoDB. Making each sample a document removes the

need for application knowledge in Katstore and future-proofs

the implementation. New fields can be added and removed

without requiring changes to Katstore and there is no fixed

schema for a sensor sample.

The software components that collect the samples will

publish the samples to the message bus [5] at intervals that

can be configured per sensor. Katstore will subscribe to

the per sensor archive subject on the message bus and store

the published samples. The samples are first written to a

buffer and will at a later stage be written to the archive. This

buffer and the archive system are described in more detail in

sections Samples Buffer and Samples Archive respectively.

Katstore has a query interface that supports several ways

to access the stored samples. This is discussed in more detail

in the section Query Interface. Samples are fetched from

the buffer and/or archive when the user queries the system;

this is done transparently to the user.

In the Performance section we describe the initial per-

formance evaluation of the Katstore system.

DATA ACQUISITION

The detail of the MeerKAT CAM system was well de-

scribed in 2015 by Marais [3] and the sensor sample data ac-

quisition was illustrated in the same year by Slabber et al. [6].

Since then some changes to where sensor samples are col-

lected from and how samples are transported have been im-

plemented, these changes are explained by Joubert et al. [5].

An abridgement of that work is given here for complete-

ness. MeerKAT CAM has many software components some

components connect to hardware devices and others connect

to software components. All inter-component communica-

tion is done with Karoo Array Telescope Communication

Protocol (KATCP) [7]. Components can call requests on

connected components for control purposes. A KATCP re-

quest is analogous to method or command calls of other

platforms. For monitoring purposes KATCP, provides the

concept of sensors. For the purpose of archiving the com-

ponents that make up the MeerKAT CAM system publish

sensor samples to different subjects on the message bus, the

publish rate is controlled by the system configuration. Kat-

store subscribes to the archive subjects and store the samples

to the buffer.

Sensors

A sensor is a fundamental concept in KATCP [7] and a

rich collection of sensor types are available. The follow-

ing types are currently supported integer, float, boolean,

timestamp, discrete, address and string. Sensors always have
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{

"name": "m000_rsc_rxl_cryostat_pressure",

"time": 1505982067.202219,

"value": 1013.25,

"status": "nominal",

"value_ts": 1505977839.44

}

Table 1: Example sensor sample

a status and the following statuses are supported unknown,

nominal, warn, error, failure, unreachable and inactive.

In KATCP sensor sampling is performed by the server

based on a sampling strategy provided by the client, this

allow every connection to set up a unique sampling strategy.

There are several sampling strategies available ranging from

a fixed time interval (period) to on value change (event).

To facilitate the flexibility KATCP provide to the software

components we had to ensure that the Time Series DataBase

(TSDB) we built is flexible and compatible with at least all

the scenario’s supported in KATCP. Two of the primary

features that lack in other time series databases are the cor-

rect handling of non numeric types of values and storage of

associated status with each sensor value.

Samples

The structure of a sensor sample has previously [6] been

explained in detail, but for the updated version of Katstore

the fields in a sample are not critical. It must be mentioned

that these fields are needed by applications that use the

samples for analysis. Katstore guarantees that all the fields

and values in the published samples are made available to

applications and users.

Samples published on the message bus have a standard

format [5], these samples are JSON objects and always have

time and name fields, Table 1 shows an example sample.

The value of time can be a floating point value or a string

value. When it is a floating point it is the time in seconds

since the epoch of 1 January 1970 00:00:00 UTC, Unix time.

When time is a string it has to be RFC3339 [8] compliant.

The value of the time field will be replaced by the floating

point representation of the supplied time.

The value of the name field is the normalised KATCP

name, where all non-alphanumeric characters have been

replaced by the "_" character. It is not necessary for Katstore

to have name in any specific format since the name field is

stored in UTF-8 and can be over 1024 characters long. But it

was found that for usability sake it was best to normalise the

storage sensor names and the sensor name used in queries.

Sensor Attributes

With each sensor there are several associated facts. We

generally refer to these as sensor attributes or meta data.

Sensors from KATCP always have the attributes description,

type, unit, and parameters.

When a new sensor is created on a component, most of-

ten only on startup, the sensor attributes are published to a

subject on the message bus. Katstore subscribes to attrib-

utes subjects on the message bus and will store the sensor

attributes into a table in the database.

Attributes are published as JSON objects and the name

field is the only prerequisite. Katstore has no limitation on

the attributes that can be associated with a sensor, as long

as it is JSON compliant. Certain attributes will improve the

user experience when using the query interface.

Internal to Katstore the sensor information is stored in

the sensors_meta table, with a row for each sensor. The

attributes are stored in a column of type JSONB. JSONB is

a JSON compliant data type in PostgreSQL [9].

A few extra fields are added when the attributes are

published to the message bus. The KATCP name, as

katcp_name, is added to the sensor attributes. This field

is also used to build up a bidirectional parent-child hierarchy

based on a "." in the KATCP name. Although not enforced

by the KATCP specification, it is common for sensors to be

named in such a hierarchical manner. The component name

is added to the sensor attributes.

In addition to the given attributes of a sensor, Katstore

keeps track of the last time the attributes were updated and

the approximate first and last sample received. The first and

last sample update times are approximations only, it is not

updated on every sample processed.

SAMPLE BUFFER

Software components collect sensor samples and publish

these to subjects on the message bus. The Bus2Db processes

of Katstore subscribe to subjects on the message bus and

store the samples into the database.

The components publish to an archive subject per sensor;

the name of these subjects are made up of four parts (tokens).

The first and second tokens are always sensor and archive.

The component name and sensor name are the last tokens.

The message bus system allows the Bus2Db processes to

subscribe to all of these subjects in a simple manner by using

a wildcard subscription, e.g. sensor.archive.>.

The Bus2Db processes all subscribe with the same queue

name, which informs the message bus to only deliver a mes-

sage to one of the Bus2Db processes. This ensures fair

distribution of work among the Bus2Db processes.

The Bus2Db processes are written in Python3 [10] and

heavily use the asynchronous capabilities of the Python3

built in asyncio library. The asyncio driver for both NATS

and PostgreSQL are used. As Bus2Db receives messages it

extracts the name and reads the time from the sample. The

name, time and sample are written to the samples_buffer

database table in batches using the Structured Query Lan-

guage (SQL) command COPY FROM. Each sample is stored

as a separate row in the samples_buffer table. Along with

the name, time and sample columns, there is also an archived

column in the sample_buffer table. This column holds a
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boolean value that is set to true once the sample has been

archived.

Samples are stored in the buffer for a fixed duration. This

samples-age is a configurable item and system administrators

can set the value to make the best use of the system hardware.

This value can be dynamically adjusted while the system

is running. Samples are trimmed from the buffer in a very

effective manner and only whole chunks where all samples

in them have expired are deleted, which is more efficient

than deleting individual rows.

PostgreSQL

PostgreSQL [9] has been a critical part of the Katstore

system since the first incarnation. The use of the data-

base has changed over time; initially it was only used to

store the references to files for fast lookup and later to hold

samples temporarily before they got written to file. In the

latest version of Katstore we did away with the distributed

in memory samples buffer [1] and use a Solid-State Drive

(SSD) backed central database for storing the sensor samples

(sample_buffer table). A few factors have contributed to

the change in the design; the availability of fast storage,

improved parallelism in later versions of PostgreSQL and

the availability of a special time series extension, Times-

caleDB [11] for PostgreSQL. The sample_buffer table is a

TimescaleDB hypertable.

The JSONB data type recently added to PostgreSQL has

made developing a scalable future proof storage system fairly

simple. By selecting JSONB as the column type for samples

and attributes we immediately simplify the processing, the

samples and attributes already arrive as JSON, and we do

not constrain the content of samples and attributes. By us-

ing JSONB we were able to simplify our implementation

and at the same time allow for flexibility. Katstore can in

the future be used to store time series samples that have a

different sample construction to what is used with MeerKAT.

The JSONB data type results in slightly more space being

used per row, but this overhead has not proven to be of any

significance.

TimescaleDB

TimescaleDB is a fairly new extension for PostgreSQL,

it was purposely developed to improve the storage and pro-

cessing of time domain data. It functions very similarly

to our old implementation [1] but is written in C with an

emphasis on performance. Using TimescaleDB was strait

forward and allowed us to remove huge parts of application

code dedicated to working with time series data.

But most importantly it gave us significantly better per-

formance and scalability.

SAMPLES ARCHIVE

One of the factors to take into account when developing a

very large TSDB is that very few of the samples stored will

have frequent access. It could even be possible that some of

the samples will never be accessed, but we do not know that

up front. Thus to build a sufficiently large data warehouse

in the traditional way where we have all the samples readily

available for that off chance that it will be queried will incur

a tremendous cost.

The approach in Katstore is to have a short-term buffer

from where recent samples can be retrieved very quickly

and to store all other (older) samples in a slower archive.

We have chosen Ceph [12], a distributed storage system, as

the platform for this archive. The archive is represented in

the database as yet another table and standard SQL quer-

ies can be performed on this table. It is even possible to

do JOIN operations on this table, but because of the data

volume this is not advised. The table, samples_archive, is

a federated table to the Ceph storage system and is imple-

mented as a Foreign Data Wrapper (FDW) in Python3 using

the Multicorn [13] library.

SQL modify operations (INSERT, UPDATE, and DE-

LETE) are not supported on the samples_archive table. A

second federated table also implemented as a FDW in Py-

thon3 using the Multicorn library was created for adding

data. This table named archiver only supports INSERT

operations.

The copying of samples from samples_buffer table to

Ceph is done by calling a stored procedure in the database.

This stored procedure takes in name as the only parameter,

where name is the normalised sensor name. It will then take

the oldest 10000 samples not yet archived for the sensor with

the given name and perform an INSERT on the archiver

table for each distinct day in the selected samples. All

samples for a day are batched and inserted as one operation.

The samples are flagged as archived. The stored proced-

ure runs as a transaction and any failure will result in the

archived flag not being set. Thus samples are inserted in

batches, a JSON array of samples, into the archiver table

but accessed as sample per row from the samples_archive

table.

Ceph

Ceph [14] is a distributed fault tolerant storage system.

Ceph allows us to combine many Hard Disk Drive (HDD)

on many servers into one large storage system. Objects in

the storage system are replicated and the failure of a drive

or a complete server will not inhibit the system.

Ceph consists out of several components and several in-

terfaces. It provides a filesystem like interface (CephFS), a

block device interface (RBD), and an object storage interface

(Rados). The filesystem interface and the block device in-

terfaces are built upon the object storage interface. Katstore

will use the object storage interface directly.

The Ceph cluster can easily grow as new hardware is

added, and the systematic replacement of storage nodes with

newer higher density ones can easily be performed.

By using Ceph for the archive storage, we are able to scale

Katstore to several Petabytes without having to maintain an

enormous database cluster. The Katstore usage patterns fits

well with Ceph’s storage design.
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Figure 1: An SKA SA Storage Pod

The CAM deployment using virtual machines [15] is us-

ing Ceph as the storage layer for all the containers; pro-

duction and development environments. The Science Data

Processing (SDP) subsystem of MeerKAT has also chosen

Ceph as the technology for storing the science data products

of the telescope.

The SDP subsystem is in the process of deploying a Ceph

system with a total raw capacity of 21 PB. This Ceph de-

ployment will consist out of 55 storage pods, with 5 storage

pods located at the telescope in the Karoo and the remain-

ing 50 pods in the Centre for High Performance Computing

(CHPC) in Cape Town. Katstore will use these clusters once

they have been commissioned.

Storage Pods

It is worth mentioning that the hardware used for the Ceph

clusters were specially developed by SKA SA. After thor-

ough research it was found that no suitable product existed

on the market and that at the required volume it would be

feasible to develop such units. Table 2 lists the hardware

specifications of a storage pod and Figure 1 shows one of

the storage pods.

MeerKAT Katstore will archive to the on site Ceph cluster

and objects will later be synchronised to the cluster at the

CHPC for off-line analysis and long-term storage.

Table 2: Storage Pod hardware specifications

Processor (CPU) Xeon 4 core 3.7 GHz

Memory (RAM) 64 GB

Network Interface 25 GbE

OS Disk 1 x 120 GB SSD

Storage Disk 48 x 8 TB HDD

Journal Disk 2 x 512 GB NVMe SSD

Rados Object Structure

Rados allows applications to create a named object and

perform read, write, and append operations on that object;

in a similar manner to doing those operations on an open

file handle. Rados also supports the storage of key-value

pairs with an object, Rados takes care of the storage and

management of these additional key-value pairs.

No constraint is placed on the content of an object, Rados

treats the contents as binary data.

We decided to create an object in Rados for each sensor

per day, thus everyday a new object is created for each sensor.

This created good logical separation between objects and

fitted well with the historic queries.

The object name is constructed from the integer day and

the normalised sensor name. An integer day is the number

of days since the Unix epoch, 1 January 1970.

Such a coded object name allows the FDW to quickly get

to the correct objects that will fulfil a query.

The contents of the objects are compressed and each batch

of samples being archived are binary packed using Concise

Binary Object Representation (CBOR) [16]. This packed

byte array is compressed with the Zstandard [17] compres-

sion algorithm using the Blosc [18] library.

This compressed byte array and a small header make up a

frame, frames are appended to the end of the Rados object.

The header is fixed length (11 bytes), it consists out of

a preamble, a control, and a size field. The preamble is 2

bytes long and is always the American Standard Code for

Information Interchange (ASCII) characters with values 29

and 31. The control field is 1 byte long, at present it is the

ASCII character with value 64, an "@". The control field

is reserved for future use. The size field is 8 bytes long,

it is a hexadecimal number and indicates the size of the

compressed byte array that contains the samples.

Samples in Rados are passive, there is no in memory index

or processes that continuously maintain tables, where as the

samples in the database are active. It is much faster accessing

an active sample than it is to access a passive sample. But

keeping samples active requires more resources. Rados gives

us acceptable read and write performance, with very low

maintenance overhead. In the case of an archive for long-

term data storage the trade-off between speed and keeping

samples passive was worth it.

Repack and Replication

Everyday the previous day’s objects in Rados will be re-

packed, the repack process reads in the whole object and

writes a new object with the same name. The repack process

creates a more densely packed object, it takes advantage of

the increased cardinality and thus has a much better com-

pression ratio. Compression settings were chosen to have

objects with a large compression ratio but foremost to have

very good decompression speed, at the cost of higher com-

pression requirements.

After an object has been repacked, the object is marked

to be synchronised to the CHPC in Cape Town. A process

running on the Katstore node in the CHPC will periodically

connect to the Karoo system and copy objects that have

been marked ready for synchronisation. The synchronisation

process is throttled to only copy a limited amount of objects

concurrently. This throttling results in the synchronisation

process running for a longer duration but constrains the

bandwidth usage over the Wide Area Network (WAN) link

connecting the telescope in the Karoo with the CHPC in

Cape Town.
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QUERY INTERFACE

MeerKAT has a sophisticated Graphical User Interface

(GUI) [19] that allows for user friendly control of the tele-

scope and provides advanced analytical tools to telescope

operators, scientist, and engineers.

MeerKAT GUI has a dedicated interface for searching and

plotting current and historical sensor information, Sensor-

Graph. This interface connect to Katstore’s Hypertext Trans-

fer Protocol (HTTP) Representational State Transfer (REST)

interface. SensorGraph is the primary interface for users to

interact with Katstore.

In addition to SensorGraph, Katstore can also be accessed

in several other ways. A Graphite [20] like interface was

developed using the graphite-api [21], this allows tools de-

signed to work with graphite to also work with Katstore.

We used the user friendly analytical platform Grafana [22],

to create dashboard displays. Grafana connects to the Kat-

store graphite interface.

For bulk operations we created a very simple Hypertext

Markup Language (HTML) interface that allows users to

click through to a point where they can download a JSON

or Comma-Separated Values (CSV) file containing all the

samples of a sensor for one day. This downloaded file maps

directly to the sensor sample object stored in Rados, the de-

compression and unpacking is done server side. This inter-

face implements the best practices for designing a RESTful

interface, which enables integration with external applica-

tions. Users that are interested in the full resolution of sensor

samples over several days or weeks will use this interface.

The query interface was designed to scale, several in-

stances of the query interface can be started on different

nodes. Using Ceph Rados as the long term store provide

excellent read scalability, objects are read from one of the

replicas, thus distributing the load over all the servers that

form part of the storage cluster.

SQL

Having the complete sensor history accessible through a

database like PostgreSQL not only gave us a stable platform

to build on but provided us with full access to the complete

SQL language. SQL is a mature and advanced query lan-

guage.

Without having to write any complicated back end ana-

lytical tools we were able to quickly adapt to users needs

with regarding to how they wanted the data queried and

re-sampled, by extending the SQL queries we used. We

do not provide users with direct access to SQL, but the de-

velopment team adding new functionality to SensorGraph

and MeerKAT GUI maintain the SQL queries as part of the

application code.

PERFORMANCE

We have not yet taken Katstore through a scientifically

rigorous set of benchmarks or done thorough performance

analysis on it. But in our current deployment it operates with

acceptable throughput.

In our lab setup, the database server is a Dell R430 with

64 GB Random-Access Memory (RAM) and a 256 GB Non-

Volatile Memory Express (NVMe) SSD as the database drive.

We are able to consistently process 90000 samples a second.

The Ceph cluster used in this setup is significantly smaller

than the production cluster. The Ceph cluster consisted out

of four Dell R420 servers with 48 GB RAM and each server

provides three 1 TB HDD to Ceph, each server had only two

1 GbE network interfaces. While maintaining the rate of

adding samples to the database we were able to perform 64

simultaneous queries, each to a different sensor, with results

returned at a rate of over 8640 samples a second.

CONCLUSION

Although Katstore was specifically designed and de-

veloped for the MeerKAT radio telescope the flexible nature

of the implementation makes it suitable for many types of

time series data.

We do not plan to use Katstore as an event log storage and

process platform, MeerKAT uses ELK [23], but it has been

tested to ensure that it can handle such a work load. The

choices made in building Katstore also makes it suitable for

log storage. This gives us confidence that new systems in

need of time series datastore can use Katstore.

The use of PostgreSQL not only as a database, but also as

a platform to develop on made the Katstore implementation

a lot easier and has yielded good performance. PostgreSQL

can easily be scaled out and has many tools and good re-

sources to do so.

By keeping the long term storage of samples out of the

database and storing them directly in the storage system we

were able to build a system that could scale at the rate and

ease of a storage cluster.
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