
OPC UA TO DOOCS BRIDGE: A TOOL FOR AUTOMATED INTEGRATION
OF INDUSTRIAL DEVICES INTO THE ACCELERATOR CONTROL

SYSTEMS AT FLASH AND EUROPEAN XFEL

F. Peters†, I. Hartl, C. Mohr, L. Winkelmann, DESY, Hamburg, Germany

Abstract
Integrating  off-the-shelf  industrial  devices  into  an

accelerator  control  system  often  requires  resource-
consuming  and  error-prone  software  development  to
implement  device-specific  communication  protocols.
With recent progress in standards for industrial controls,
more and more devices leverage the OPC UA machine-to-
machine  communication  protocol  to  publish  their
functionality via an embedded information model.

Here we present a generic DOOCS server, which uses a
device's  published  OPC  UA  information  model  for
automatic integration into the accelerator control systems
of  the  FLASH and  European  XFEL free-electron  laser
facilities,  thus reducing  software  development  time and
errors.

We demonstrate that the server's and protocol's latency
allows DOOCS-based burst-to-burst feedback in the 10Hz
operation modes of FLASH and European XFEL and is
capable of handling more than 10  data update events per⁴
second,  without  degrading performance.  We also report
on  the  successful  integration  of  a  commercial  laser
amplifier, as well as our own PLC-based laser protection
system into DOOCS.

MOTIVATION
The  DOOCS control  system [1]  of  the  FLASH  and

European  XFEL free-electron  laser  facilities  extends  to
thousands  of  individual  sensor  and  actuator  devices,
connected  to  hundreds  of  distributed  computer  nodes.
Many  of  these  devices  are  off-the-shelf  industrial
products  and  the  majority  of  them  feature  a  device-
specific  communication  protocol.  Integrating  them  into
the  control  system  requires  implementing  the  custom
protocols  and mapping the devices'  functionality  to  the
DOOCS data model. This software development process
is both resource-consuming and error-prone.

The  development  of  a  general  OPC UA  to  DOOCS
bridge software enables the immediate integration of OPC
UA devices into the control system, based on the device's
published OPC UA information  model. Thus integration
effort and costs are minimized.

INTRODUCTION TO OPC UA
A result of recent progress in industrial controls is the

standardization  of  the  OPC  UA  (Open  Platform
Communications,  Unified  Architecture)  protocol  [2].  It
differs significantly from it's predecessors by it's ability to
not only transport machine data (such as control variables,

measurements  and  parameters)  but  also  describe  them
semantically in a machine-readable information model.

In the simplest case, the device-specific part of the OPC
UA  information  model  consists  of  named  Variables,
Objects and Methods, called  nodes. The device-specific
root node is a defined object, fittingly named Objects.

• Objects contain  any  number  of  variables,  methods
and/or other objects.

• Variables are either scalars or fixed-size arrays of a
fixed type (e.g. 32-bit integer, float, string)

• Methods have zero or more input arguments as well
as zero or more output arguments. The arguments are
named and typed, similar to variables.

The  OPC  UA  protocol  follows  a  server-client
communication model over TCP/IP. Clients can perform
synchronous requests to read and write node values, i.e.
get  or  set  the  value  of  a  variable  and  call  a  method.
Additionally,  clients  can  subscribe  to  nodes  to  be
asynchronously notified when a variable's value changes.

INTRODUCTION TO DOOCS
The  DOOCS  (Distributed  Object-Oriented  Control

System)  data  model  constists  of  named  and  typed
properties. The type of a property can range from simple
scalar values such as bits or floating point numbers, over
arrays,  up  to  arbitrarily  complex  data  types,  such  as
camera images with metadata.

Properties  are  organized  into  locations,  where  one
location  typically  corresponds  to  one  physical  device.
Each location and it's properties can be identified by their
DOOCS addresses.  Several  locations  can  run  alongside
each  other  in  a  server  process  on  a  specific  computer
node.

The  DOOCS  protocol  also  follows  the  server-client
model over TCP/IP. Clients can read or write the values
of properties synchronously via “get” and “put” requests.
Alternatively,  clients  can  subscribe  to  properties,  to
receive asynchronous updates of the properties value via a
“server push” messaging mechanism.

MAPPING OPC UA TO DOOCS
Although  there  are  considerable  similarities  between

the  data  and  communication  models  of  OPC  UA  and
DOOCS,  some  aspects  are  incompatible  and  impose
limitations to the bridging between the two protocols.

First, one DOOCS location connects to a single OPC
UA server and exports the objects, variables and methods
in a subset of it's data model as DOOCS properties. At the
same time it  is  possible  that  several  DOOCS locations
connect to the same OPC UA server,  mapping separate,
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overlapping  or  even  the  identical  subsets  of  it's  data
model.

Second, the components of the OPC UA data model are
“translated” to DOOCS properties as follows:

Variables
Each  OPC  UA  variable  is  mapped  to  one  DOOCS

property with an appropriate type (Table 1). The DOOCS
server subscribes to OPC UA data-change events for the
mapped variable  to  achieve  fast  update  times.  Property
value changes are published to the DOOCS system via the
publish-subscribe mechanism.

Table  1:  Mapping  of  Types  Between  OPC  UA  and
DOOCS

OPC UA DOOCS Scalar DOOCS Array
Boolean,
Sbyte, Byte

D_int D_bytearray

Int16, Uin16 D_int D_shortarray

Int32, Uin32 D_int D_intarray

Int64, Uin64 D_int D_longarray

Float D_float D_floatarray

Double D_double D_doublearray
String,
LocalizedText

D_string -

The DOOCS property's name is generated from it's path
in the OPC UA data model, prefixed with “OPCUA” to
distinguish the mapped properties  from other  properties
related to configuration or DOOCS server diagnostic.

Methods
DOOCS  does  not  directly  support  the  concept  of  a

method call with arbitrary arguments and return values.
Thus  OPC  UA  methods  are  each  mapped  to  several
DOOCS properties:

• One DOOCS property for each of the method's input
arguments.

• One  DOOCS  property  for  each  of  the  method's
output arguments. The type mappings for both input-
and output arguments are the same as for variables
(Table 1).

• One “CALL” property of type D_int.
To  call  the  OPC  UA  method,  a  client  first  sets  the

DOOCS properties for the input arguments.  To actually
execute the method, the value 1 is written to the “CALL”
property.  The  DOOCS  properties  for  the  output
arguments are then set to the values returned by the OPC
UA method call.

As  a  consequence,  the  mapped  methods  are  not
“atomic”.  If  several  DOOCS clients  access  a  method's
argument properties, race conditions may occur.

Objects
Each child of an OPC UA object (i.e. another object,

variable  or  method)  is  mapped  to  DOOCS  properties.
DOOCS does not support the concept of nesting and all
properties in a location exist in a flat structure. Thus the
object itself does not appear in DOOCS. Only it's name is
retained  as  a  component  of  the  address  of  properties
belonging to the object.

EVENT-BASED COMMUNICATION
BETWEEN OPC UA AND DOOCS

SERVERS
The communication between the OPC UA and DOOCS

Systems involve four distinct  components (Fig.  1).  The
components are typically physically distributed over the
facility's TCP/IP control network.

OPC  UA  Devices are  the  industrial  devices  to  be
integrated into the control system. Often these are based
on programmable logic controllers (PLCs).

The  OPC  UA  DOOCS  Server is  the  software
component discussed here. It is written in C++, using the

Figure 1: Sequence Diagram of OPC UA to DOOCS communication.
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standard  DOOCS  libraries  as  well  as  the  open-source
FreeOpcUa library for OPC UA communication [3]. It's
only  task  is  mapping  the  communication  between  the
OPC UA and DOOCS protocols. No device-specific logic
is programmed into this  server.  Note that  this software
component is a DOOCS server, but an OPC UA client.

Application DOOCS Servers, also called middle-layer
servers, can optionally be used to  perform device-specific
operations  on  the  OPC UA  device  in  an  automatic  or
semi-automatic fashion without direct operator input, e.g.
feedback controls or running state machines.

JDDD Control Panels (Java DOOCS Data Display)[4]
enable operators to perform control tasks.

Feedback Performance
Using  the  asynchronous  update  capabilities  of  both

OPC  UA  and  DOOCS  (DataChange  event  and  Server
Push, Fig. 1) enables a low-latency operation of controls
and  feedbacks  in  device-specific  application  servers,
limited mostly by the performance of the OPC UA device.

To measure feedback performance, we use a Beckhoff
[5] CX5140 PLC running an OPC UA server to read an
analog  input  signal.   Through the asynchronous  update
data path as described above, the signal is propagated to a
“Feedback”  application  server,  doing  nothing  but
immediately writing the received value back to the OPC
UA DOOCS server and to an analog output signal in the
PLC. The rising-edge delay between the PLC's input- and
output  signals  is  our  performance  metric  (Fig.  2).  We
observe  that  feedback  latency depends linearly on PLC
cycle time. Cycle times up to about 20ms allow burst-to-
burst  feedback  in  the  10Hz-operated  FLASH  and
European XFEL facilites.

Figure 2: Feedback performance of the OPC UA DOOCS
server.   The dashed line at  100ms shows the repetition
period of the burst-mode operated FLASH and European
XFEL facilities.

Behaviour Under Load
To  analyze  the  system  under  load,  we  measure  the

behaviour  of  the  OPC  UA  DOOCS  server  with  a
feedback-setup similar to the one described previously. A
number of  variables  (16-bit  integers)  are set  to random
values on a PLC running with 10ms cycle time. Again we
measure round-trip time of an analog input signal as our
performance metric. Additionaly we monitor server CPU
load and network load (Table 2).

We observe  constant performance up to more than 10⁴
DataChange  events  per  second  (100  variables,  updated
every 10ms). With a larger number of update events, CPU
load becomes a limiting factor.

Table  2:  OPC UA DOOCS Server  Performance  Under
Load

Number of
OPC  UA
Variables

Round-
trip-time

avg.

Server CPU
load

Network
load

1 38ms 3.5% -

10 35ms 10% 530kB/s

100 36ms 17% 2MB/s

1000 63ms 67% 13MB/s

Note that the use of individual 16-bit integer variables
is close to a worst-case in terms of protocol overhead. The
same number of updating variables could be transferred
more efficiently by using arrays.

INTEGRATION OF COMMERCIAL
DEVICES INTO DOOCS

The  OPC  UA  DOOCS  server  is  currently  used  for
integration of several PLC-based systems into the FLASH
and European XFEL control systems.

• A  commercial  laser  amplifier  is  installed  in  the
XFEL  backup  photocathode-laser  currently  being
commissioned.  The laser  control  system runs on a
Beckhoff PLC including an OPC UA server. 

• Several  Beckhoff  PLCs  are  installed  in  the  laser
systems  at  FLASH  and  European  XFEL  used  for
controlling  actuators  in  the  laser-  and  beamline-
systems as well as for monitoring purposes such as
lab-temperatures and cooling water flow.

• For  the  upcoming  FLASH2  pump-probe  laser
system,  a  PLC-based  laser  protection  system  is
developed at DESY.

Integration of these devices into DOOCS was achieved
without programming work, requiring only configuration
of the servers' network connections and, where necessary,
the design of jDDD control panels.

CONCLUSION
The  emergence  of  standards  such  as  OPC  UA  in

industrial controls enable rapid integration of conforming
devices  into  existing  control  infrastructure.  The
development of a single piece of software,  bridging the
OPC UA protocol and DOOCS, makes the integration of
OPC UA-enabled devices into the control systems of the
FLASH and European XFEL free-electron laser facilities
easy,  quick  and  inexpensive.  Using  a  standardized
communication  protocol  increases  system  reliability  as
well as availability of support in the form of litarature and
commercial services.

By  choosing  appropriate  mappings  between  the  data
models  of  the  protocols,  we achieve  a  well-performing
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and  reliable,  yet  simple  interplay  between  the
heterogenous components of the control systems.
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