
OPC UA TO DOOCS BRIDGE: A TOOL FOR AUTOMATED INTEGRATION
OF INDUSTRIAL DEVICES INTO THE ACCELERATOR CONTROL

SYSTEMS AT FLASH AND EUROPEAN XFEL

F. Peters†, I. Hartl, C. Mohr, L. Winkelmann, DESY, Hamburg, Germany

Abstract
Integrating off-the-shelf industrial devices into an

accelerator control system often requires resource-
consuming and error-prone software development to
implement device-specific communication protocols.
With recent progress in standards for industrial controls,
more and more devices leverage the OPC UA machine-to-
machine communication protocol to publish their
functionality via an embedded information model.

Here we present a generic DOOCS server, which uses a
device's published OPC UA information model for
automatic integration into the accelerator control systems
of the FLASH and European XFEL free-electron laser
facilities, thus reducing software development time and
errors.

We demonstrate that the server's and protocol's latency
allows DOOCS-based burst-to-burst feedback in the 10Hz
operation modes of FLASH and European XFEL and is
capable of handling more than 10 data update events per⁴
second, without degrading performance. We also report
on the successful integration of a commercial laser
amplifier, as well as our own PLC-based laser protection
system into DOOCS.

MOTIVATION
The DOOCS control system [1] of the FLASH and

European XFEL free-electron laser facilities extends to
thousands of individual sensor and actuator devices,
connected to hundreds of distributed computer nodes.
Many of these devices are off-the-shelf industrial
products and the majority of them feature a device-
specific communication protocol. Integrating them into
the control system requires implementing the custom
protocols and mapping the devices' functionality to the
DOOCS data model. This software development process
is both resource-consuming and error-prone.

The development of a general OPC UA to DOOCS
bridge software enables the immediate integration of OPC
UA devices into the control system, based on the device's
published OPC UA information model. Thus integration
effort and costs are minimized.

INTRODUCTION TO OPC UA
A result of recent progress in industrial controls is the

standardization of the OPC UA (Open Platform
Communications, Unified Architecture) protocol [2]. It
differs significantly from it's predecessors by it's ability to
not only transport machine data (such as control variables,

measurements and parameters) but also describe them
semantically in a machine-readable information model.

In the simplest case, the device-specific part of the OPC
UA information model consists of named Variables,
Objects and Methods, called nodes. The device-specific
root node is a defined object, fittingly named Objects.

• Objects contain any number of variables, methods
and/or other objects.

• Variables are either scalars or fixed-size arrays of a
fixed type (e.g. 32-bit integer, float, string)

• Methods have zero or more input arguments as well
as zero or more output arguments. The arguments are
named and typed, similar to variables.

The OPC UA protocol follows a server-client
communication model over TCP/IP. Clients can perform
synchronous requests to read and write node values, i.e.
get or set the value of a variable and call a method.
Additionally, clients can subscribe to nodes to be
asynchronously notified when a variable's value changes.

INTRODUCTION TO DOOCS
The DOOCS (Distributed Object-Oriented Control

System) data model constists of named and typed
properties. The type of a property can range from simple
scalar values such as bits or floating point numbers, over
arrays, up to arbitrarily complex data types, such as
camera images with metadata.

Properties are organized into locations, where one
location typically corresponds to one physical device.
Each location and it's properties can be identified by their
DOOCS addresses. Several locations can run alongside
each other in a server process on a specific computer
node.

The DOOCS protocol also follows the server-client
model over TCP/IP. Clients can read or write the values
of properties synchronously via “get” and “put” requests.
Alternatively, clients can subscribe to properties, to
receive asynchronous updates of the properties value via a
“server push” messaging mechanism.

MAPPING OPC UA TO DOOCS
Although there are considerable similarities between

the data and communication models of OPC UA and
DOOCS, some aspects are incompatible and impose
limitations to the bridging between the two protocols.

First, one DOOCS location connects to a single OPC
UA server and exports the objects, variables and methods
in a subset of it's data model as DOOCS properties. At the
same time it is possible that several DOOCS locations
connect to the same OPC UA server, mapping separate,

__
† Email: falko.peters@desy.de

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUMPA05

TUMPA05
344

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

overlapping or even the identical subsets of it's data
model.

Second, the components of the OPC UA data model are
“translated” to DOOCS properties as follows:

Variables
Each OPC UA variable is mapped to one DOOCS

property with an appropriate type (Table 1). The DOOCS
server subscribes to OPC UA data-change events for the
mapped variable to achieve fast update times. Property
value changes are published to the DOOCS system via the
publish-subscribe mechanism.

Table 1: Mapping of Types Between OPC UA and
DOOCS

OPC UA DOOCS Scalar DOOCS Array
Boolean,
Sbyte, Byte

D_int D_bytearray

Int16, Uin16 D_int D_shortarray

Int32, Uin32 D_int D_intarray

Int64, Uin64 D_int D_longarray

Float D_float D_floatarray

Double D_double D_doublearray
String,
LocalizedText

D_string -

The DOOCS property's name is generated from it's path
in the OPC UA data model, prefixed with “OPCUA” to
distinguish the mapped properties from other properties
related to configuration or DOOCS server diagnostic.

Methods
DOOCS does not directly support the concept of a

method call with arbitrary arguments and return values.
Thus OPC UA methods are each mapped to several
DOOCS properties:

• One DOOCS property for each of the method's input
arguments.

• One DOOCS property for each of the method's
output arguments. The type mappings for both input-
and output arguments are the same as for variables
(Table 1).

• One “CALL” property of type D_int.
To call the OPC UA method, a client first sets the

DOOCS properties for the input arguments. To actually
execute the method, the value 1 is written to the “CALL”
property. The DOOCS properties for the output
arguments are then set to the values returned by the OPC
UA method call.

As a consequence, the mapped methods are not
“atomic”. If several DOOCS clients access a method's
argument properties, race conditions may occur.

Objects
Each child of an OPC UA object (i.e. another object,

variable or method) is mapped to DOOCS properties.
DOOCS does not support the concept of nesting and all
properties in a location exist in a flat structure. Thus the
object itself does not appear in DOOCS. Only it's name is
retained as a component of the address of properties
belonging to the object.

EVENT-BASED COMMUNICATION
BETWEEN OPC UA AND DOOCS

SERVERS
The communication between the OPC UA and DOOCS

Systems involve four distinct components (Fig. 1). The
components are typically physically distributed over the
facility's TCP/IP control network.

OPC UA Devices are the industrial devices to be
integrated into the control system. Often these are based
on programmable logic controllers (PLCs).

The OPC UA DOOCS Server is the software
component discussed here. It is written in C++, using the

Figure 1: Sequence Diagram of OPC UA to DOOCS communication.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUMPA05

Integrating Diverse Systems
TUMPA05

345

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

standard DOOCS libraries as well as the open-source
FreeOpcUa library for OPC UA communication [3]. It's
only task is mapping the communication between the
OPC UA and DOOCS protocols. No device-specific logic
is programmed into this server. Note that this software
component is a DOOCS server, but an OPC UA client.

Application DOOCS Servers, also called middle-layer
servers, can optionally be used to perform device-specific
operations on the OPC UA device in an automatic or
semi-automatic fashion without direct operator input, e.g.
feedback controls or running state machines.

JDDD Control Panels (Java DOOCS Data Display)[4]
enable operators to perform control tasks.

Feedback Performance
Using the asynchronous update capabilities of both

OPC UA and DOOCS (DataChange event and Server
Push, Fig. 1) enables a low-latency operation of controls
and feedbacks in device-specific application servers,
limited mostly by the performance of the OPC UA device.

To measure feedback performance, we use a Beckhoff
[5] CX5140 PLC running an OPC UA server to read an
analog input signal. Through the asynchronous update
data path as described above, the signal is propagated to a
“Feedback” application server, doing nothing but
immediately writing the received value back to the OPC
UA DOOCS server and to an analog output signal in the
PLC. The rising-edge delay between the PLC's input- and
output signals is our performance metric (Fig. 2). We
observe that feedback latency depends linearly on PLC
cycle time. Cycle times up to about 20ms allow burst-to-
burst feedback in the 10Hz-operated FLASH and
European XFEL facilites.

Figure 2: Feedback performance of the OPC UA DOOCS
server. The dashed line at 100ms shows the repetition
period of the burst-mode operated FLASH and European
XFEL facilities.

Behaviour Under Load
To analyze the system under load, we measure the

behaviour of the OPC UA DOOCS server with a
feedback-setup similar to the one described previously. A
number of variables (16-bit integers) are set to random
values on a PLC running with 10ms cycle time. Again we
measure round-trip time of an analog input signal as our
performance metric. Additionaly we monitor server CPU
load and network load (Table 2).

We observe constant performance up to more than 10⁴
DataChange events per second (100 variables, updated
every 10ms). With a larger number of update events, CPU
load becomes a limiting factor.

Table 2: OPC UA DOOCS Server Performance Under
Load

Number of
OPC UA
Variables

Round-
trip-time

avg.

Server CPU
load

Network
load

1 38ms 3.5% -

10 35ms 10% 530kB/s

100 36ms 17% 2MB/s

1000 63ms 67% 13MB/s

Note that the use of individual 16-bit integer variables
is close to a worst-case in terms of protocol overhead. The
same number of updating variables could be transferred
more efficiently by using arrays.

INTEGRATION OF COMMERCIAL
DEVICES INTO DOOCS

The OPC UA DOOCS server is currently used for
integration of several PLC-based systems into the FLASH
and European XFEL control systems.

• A commercial laser amplifier is installed in the
XFEL backup photocathode-laser currently being
commissioned. The laser control system runs on a
Beckhoff PLC including an OPC UA server.

• Several Beckhoff PLCs are installed in the laser
systems at FLASH and European XFEL used for
controlling actuators in the laser- and beamline-
systems as well as for monitoring purposes such as
lab-temperatures and cooling water flow.

• For the upcoming FLASH2 pump-probe laser
system, a PLC-based laser protection system is
developed at DESY.

Integration of these devices into DOOCS was achieved
without programming work, requiring only configuration
of the servers' network connections and, where necessary,
the design of jDDD control panels.

CONCLUSION
The emergence of standards such as OPC UA in

industrial controls enable rapid integration of conforming
devices into existing control infrastructure. The
development of a single piece of software, bridging the
OPC UA protocol and DOOCS, makes the integration of
OPC UA-enabled devices into the control systems of the
FLASH and European XFEL free-electron laser facilities
easy, quick and inexpensive. Using a standardized
communication protocol increases system reliability as
well as availability of support in the form of litarature and
commercial services.

By choosing appropriate mappings between the data
models of the protocols, we achieve a well-performing

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUMPA05

TUMPA05
346

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

and reliable, yet simple interplay between the
heterogenous components of the control systems.

REFERENCES
[1] G. Grygiel, O. Hensler, K. Rehlich, “DOOCS: A Distributed

Object-Oriented Control System on PC’s and Workstations”,
PCaPAC conference, 1996.

[2] The OPC Foundation, “OPC Unified Architecture”,
http://opcfoundation.org/opc-ua/

[3] FreeOpcUa library, http://freeopcua.github.io

[4] E. Sombrowski. A. Petrosyan, K. Rehlich, W. Schütte,
“jddd, a state-of-the-art solution for control
panel development”, in Proc. ICALEPCS’11, Grenoble,
France, October 2011, paper THBHAUST04.

[5] Beckhoff Automation GmbH, http://beckhoff.com

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUMPA05

Integrating Diverse Systems
TUMPA05

347

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

