
PYTHON AND MATLAB INTERFACES TO RHIC CONTROLS DATA ∗

K.A. Brown†, T. D’Ottavio, W. Fu, A. Marusic, J. Morris, S. Nemesure, A. Sukhanov,
Collider-Accelerator Department, BNL, Upton, NY, USA

Abstract
In keeping with a long tradition in the BNL Collider-

Accelerator Department (C-AD) controls environment, we
try to provide general and simple to use interfaces to the
users of the controls. In the past, we have built command
line tools, Java tools, and C++ tools that allow users to easily
access live and historical controls data. With more demand
for access through other interfaces, we recently built a set of
Python and MATLAB modules to simplify access to control
system data. This is possible, and made relatively easy, with
the development of HTTP service interfaces to the controls.
While this paper focuses on the Python and MATLAB tools
built on top of the HTTP services, this work demonstrates
clearly how the HTTP service paradigm frees the developer
from having to work from any particular operating system
or develop using any particular development tool.

INTRODUCTION
The C-AD controls system [1,2] was developed in the mid-

1990’s and built largely in C, C++, and Java (some legacy
code in C with new code all in C++ and Java). The basic de-
sign is based on theAccelerator Device Object (ADO)model,
which is similar to the TACO (predecessor to TANGO [4])
model. The ADO model, shown in Fig. 1, is a client-server
model that uses TCP/IP as the communcation protocol and
RPC at the server level.

Figure 1: C-AD Controls ADO communication model.

In the ADO communications model, a client application
just has to know the name of the ADO and device parameter
in order to establish a connection to that parameter. Com-
munication is done using get and set calls. Asynchronous
requests can also be established. In the example shown in
∗ Work performed under Contract Number DE-SC0012704 with the aus-
pices of the US Department of Energy.
† kbrown@bnl.gov

Fig. 1, two clients are trying to communicate with the same
ADO, rbpm.bi9-bh1, but to different parameters. The ADO
server handles the client requests as they are received. Since
the communication is through TPC/IP, the client needs to
establish a direct connection to the ADO server. We use a
specialized Controls Name Server (CNS) to tranlate ADO
names into host names and RPC program/version numbers,
so those ADOs can be contacted.

RESTFUL SERVICES MODEL
A Representational State Transfer (REST) architectural

style of communication utilizes the communication protocol
at the internet level, to use textual resource representations
and predefined stateless operations. HTTP is an application
protocol and the next communication layer up from TCP/IP,
a transport protocol, and provides a clean, standard, and well-
defined protocol for this communication. The use of HTTP
servers provides the ability to abstract away the control sys-
tem and even the operating system dependencies from the
client application [3]. The client can now be an iOS app, an
Android app, a Python script, a MATLAB® script, or even
just a simple web page built to interface to the HTTP server.
In each case a client just has to know the HTTP specific pro-
tocol interface and the names of the control system ADO’s
and devices. Figure 2 shows the communications model for
a Python application communicating to the controls through
an HTTP Device server interface and through an HTTP Data
server interface. The Device Server allows direct set and
get communication to the ADO parameters while the Data
Server provides access to logged data.

Figure 2: Example of HTTP communications model.

Data Server
In a REST communication model, the HTTP message in-

cludes a request (such asGET, and PUT ) along with the meta

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA153

Software Technology Evolution
TUPHA153

765

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



data needed to complete the request. The server returns the
data for synchronous calls, or, in the case of asynchronous
calls, a handle for the client to use for completing the com-
munication transaction.
The Data server provides a REST interface to data col-

lected and stored by the C-AD controls system data logging
facilities [5]. To get data from the server, an http message
must be constructed by the client. This message is broken
up into distinct parts. First there is the base path part of the
message, which might look like,

http://servername.bnl.gov:port/DataServer/

This is followed by specific fields that construct the re-
quest. If we want to get data from the RHIC Schottky logs,
the message would contain the name of the Schottky ADO
manager (request = SchottkyMan), the name of the desired
parameters (params = horz.blue:tuneM), the maximum num-
ber of points to return, and other parameters. An actual
request might look similar to this:

http://servername.bnl.gov:port/DataServer/
SchottkyMan?user=kbrown&client=path/
LogClient&host=loghostname&start=unixtime&
end=unixtime&data=horz.blue:tuneM&count=
20000&context=SyncStdAdo.

Expecting general users to construct such messages is still
too low level of a protocol, so we have built Python and
MATLAB® packages that make it much easier to request
data from the logs. An end user just has to know the name
of the log server for the data they want, the start and end
times for the data (in human readable form), and the names
of the parameters. Much of this interface is specific to the
C-AD control system and how data is logged and organized.
Nevertheless, it is now a fairly simple process to bring log
data to other platforms, adding great flexibility in how end
users access controls information.

Device Server
The Device server provides a REST interface for direct

interaction with ADO parameters. To simplify the interface
for end users, Python and MATLAB® packages have been
built. So now, an application just makes a simple set or get
request using the Device IO class interface. Figure 3 shows
an example of a Python script using this interface.
Data is packaged into a Python dictionary, allowing the

returned data to be addressed by the controls ADO and
parameter names.

PYTHON TOOLS
Python has been used in the C-AD controls network for

many years, primarily for offline data analysis. There has
been increased interest in the use of Python at C-AD starting
in 2016. Python’s extensive library of open source packages,
including data analysis packages, makes it very popular and
attractive for use at C-AD.

from d e v i c e i o import pyado
pyado . LogToFi le = True

# use t h e d e v i c e s e r v e r
adoda t a = pyado . u s eH t t p ( )

r e q u e s t = [ ( adoname , adoparam1 ) ,
( adoname , adoparam2 ) ]

v a l u e = adoda t a . g e t ( r e q u e s t )
f o r r in va l u e :

f o r k in va l u e [ r ] :
pr in t k , v a l u e [ r ] [ k ]

Figure 3: Structure of Python interface to Device Server.

Although Python as a language has its deficiencies (e.g.,
thread limitations) it has a large community of users and
significant high-quality code base.

There are six basic functions for interfacing to the C-AD
controls system through Python. In addition, an application
can choose whether to go through the Device server (REST
API interface) or use direct calls using a pure Python API
interface. From the application point of view either approach
looks exactly the same except for one call that defines which
interface to use (e.g., see Fig. 3).

The six basic functions are:

getMeta(*args,**keywords)
This function pulls the meta data for the given ADO,

which is useful if an application needs to know any of the
properties associated with a given ADO or its parameters.
Examples of its use are:

1. getMeta(’adoname’) returns a list of parameters for the
ADO

2. getMeta(’adoname’, all=True) returns a dictionary of
all metadata related to the ADO

3. getMeta(’adoname’, parname’) returns a dictionary of
all the properties associated with the given ADO pa-
rameter

get(*args,**keywords)
This function returns a dictionary of entries, keyed with

’adoName:parameterName’, each entry is in turn a dictionary
of returned properties with keys ’value’, ’timestamp’ and
others. Examples of its use are:

1. get(’adoName’,’parName’) returns value and times-
tamp of the parameter.

2. get(’adoName’,’parName.propertyName’) returns pa-
rameter’s property.

3. get([(adoName1,parName1),(adoName2,parName2),
...])
returns values or properties of several parameters.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA153

TUPHA153
766

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



set(*args)
The set function sends a new value or set of values to the

specified ADO/device(s). Examples of its use are:

1. set(’adoName’,’parName’,value) sets the parameter
value.

2. set([(adoName1,parName1,value1),
(adoName2,parName2,value2), ...])
sets values of several parameters.

getAsync(callback, *args,**keywords)
This sets a monitor on the parameter, which will cause a

call of a callback function each time the value changes.
The callback function can be the same for several calls of

the getAsync. The callback function is invoked as:
callback(*args)

where the args are similar to the return of the
get([(adoName1,parName1),(adoName2,parName2),...])

cancelAsync()
Cancel the monitor, set by getAsync().

sendAlarm(message,**keywords)
Send an alarm message to the RHIC Controls alarm

servers.
Example Keyword Arguments:

host = ’rhicnotifyserver.pbn.bnl.gov’
program = 2000004
topic = ’ADO:adoName:parameter’
category = notify.CATEGORY[’NOTIFY_OK’]

One of the driving motivations to make greater use of
Python in C-AD is the ability to take code from other facili-
ties and convert it over for our use. Two recent examples are
a MATLAB® module developed at Cornell for conditioning
a high voltage electron gun and a Python application (suite)
developed at NSLS II for beam orbit commissioning and
studies. In each case, the conversion for use on our controls
was made fairly simple by changing controls interfaces from
the original applications to use our HTTP servers with our
device names. The main focus, then, was put into altering
the look and functionality of the application, based on the
end user requirements.

MATLAB® TOOLS
The MATLAB® system has several ways to interface

with accelerator control systems (hardware and software).
Some applications need additional tool boxes and others re-
quire a significant amount of programming effort to realize
the seamless communication between the controls system
and MATLAB®. By taking the advantages of the REST
API services, we developed a MATLAB® script library
which bridges the gaps between control data resources and
MATLAB® system. With this library, MATLAB® users
and application developers can easily communicate with

Figure 4: MATLAB® library interface.

accelerator control system interfaces, including hardware,
software, file logging systems and database systems. Once
the control data has been brought into the MATLAB® envi-
ronment, developers can process and analyze the data with
MATLAB®’s powerful features. Figure 4 shows how this
MATLAB® library works:
Figure 5 shows the MATLAB® library functions, get-

DeviceValue and getListDeviceValue, as examples of the
interface to the C-AD ADO controls.

f u n c t i o n [ d e v i c e _ v a l u e ] =
ge tDev i c eVa lue ( device_name ,

pa r ame t e r , ppm_user )
f u n c t i o n d e v i c e _ v a l u e s ( a r r a y ) =

g e tL i s tD ev i c eVa l u e (
d e v i c e _ l i s t ( a r r a y ) )

Figure 5: MATLAB® library functions interfacing to con-
trols devices.

The returned values of the functions can be any data type
depending on the data types of control parameters of the
devices. The returned data can also include the time stamp
of the device values if desired.

Figure 6 show how to get asynchronous data from logged
controls data.

f u n c t i o n [ t i t l e , XLabel , YLabel ,
r e s u l t s _ c e l l _ a r r a y ] =

ge tDa t a ( logReq , d a t a I t ems ,
s t a r t _ d a t e , end_da te ,
count , f i l t e r )

Figure 6: MATLAB® library function interfacing to controls
data.

In the function, users just specify the location of the logged
data (file names), time range, device names and parameters
(array of items), and data filter to filter the data (if desired),

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA153

Software Technology Evolution
TUPHA153

767

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



and get the query result with the details in data title, X-Y
data titles, and cell data corresponding to the array of device
items and time stamps.

For database data, the MATLAB® function simply passes
the database server name, database name, and SQL state-
ment, then get the execution results of the SQL statement.
The library function and the REST API services underneath
handles all database operations. The returned data is in
JSON format.

This MATLAB® library provides to MATLAB® users or
application developers a simple interface for connecting to
the control system and get control data using function calls.
Figure 7 shows an example of a RHIC Control application
that uses this MATLAB® library in the last RHIC run_fy17:
The program named "Camera Image Monitor" communi-
cates with a accelerator control camera device through the
MATLAB® library functions and makes the camera image
data available in the MATLAB® system. It then makes use
of the MATLAB®’s powerful data analysis, process and vi-
sualization capability to create the rich GUI and present the
data in a very meaningful way.

Figure 7: CeC Camera Image Monitor App [8].

APPLICATIONS
DC Gun Auto-conditioning
For the Low Energy RHIC electron Cooling project

(LEReC) [9], a high voltage electron gun was built by Cor-
nell. To condition this device, which needs to operate at
over 400 kV, a significant conditioning process must take
place. Cornell developed a simple MATLAB® script that
automated some aspects of the conditioning. Since the
MATLAB® script depended on the EPICS [6] MATLAB®

interface, it would not work with the C-AD controls system.
The simplest solution was to convert the MATLAB® code
to Python. This was fairly easy to do. However, the commis-
sioners wanted the new script to do more than the Cornell
script, so it evolved.
Since the script had some parameters hard-coded into it,

for the Python version these parameters were turned into

ADO parameters, allowing commissioners to change the
script behavior without having to restart it.

In the end, the new Python script was much different from
the MATLAB® script. To perform properly required mul-
tiple threads and new logic was required (i.e., an auto turn
on mode was included, in case the power supply tripped off
during conditioning). However, the core logic of the original
script remained in place and that gave some ’comfort’ to
the commissioners, who had concerns about re-writing the
entire application from scratch.
So, in this case, code was taken from another facility

and really was used as a guide to repurpose to our facility.
However, it was extremely useful to have that original code
and the focus of the development was not on the controls
interface but on the function and look of the new code. The
gun conditioning application graphics window is shown in
Fig. 8.

Figure 8: Graphic display of DC Gun Conditioning.

LEReC & CEC Online Models
Both LEReC and the Coherent Electron Cooling proof

of principle experiment (CeC) [10] are electron accelera-
tor systems, with a significant level of complexity. Each
has electron guns with low energy sections and beam trans-
port systems composed of standard accelerator components,
including transport solenoids. Each is instrumented with
current monitors, beam position monitors, and various types
of profile monitors. A more detailed description of the on-
line model interface is described by Brown [7]. The CeC
model application graphics page is shown in Fig. 9.

FUTURE PLANS
The new RESTful tools for HTTP protocol interfaces

opens up a world of applications. These combined with
Python and MATLAB modules provide a simple and easy
to use interface to the controls systems. As is the culture
of the C-AD Controls system, we try to empower our end

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA153

TUPHA153
768

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



Figure 9: CeC Model page.

users as much as possible, enabling the operators, physicists,
and other support groups to build their own interfaces to the
controls. As these other groups make use of these new tools
we expect feature requests, as well as bug reports.

What is more exciting is how these tools position the C-
AD controls for the future, when it comes time to build the
eRHIC controls. High level interfaces no longer have deep
connections to low level controls interfaces. As the REST
applications grow, we build a suite of interfaces that will
require little modification for commissioning and operating
eRHIC.

REFERENCES
[1] J. Skelly and J. Morris, in Proc. ICALEPCS’99, Trieste, Italy,

Oct. 1999, pp. 42-24.
[2] L. Hoff and J. Skelly, in Proc. ICALEPCS’93, Berlin, Ger-

many, Oct. 1993, Nucl. Instr. and Meth. A, p. 185, 1993.
[3] T. D’Ottavio et al., presented at ICALEPCS’17, Barcelona,

Spain, Oct. 2017, paper TUPHA157, this conference.
[4] TANGO, http://www.tango-controls.org/.
[5] T. D’Ottavio, B. Frak, S. Nemesure, and J. Morris, in Proc.

ICALEPCS’11, Grenoble, France, Oct. 2011, pp. 40-43.
[6] EPICS, http://www.aps.anl.gov/epics/.
[7] K. Brown et al., presented at ICALEPCS’17, Barcelona,

Spain, Oct. 2017, paper TUPHA135, this conference.
[8] I. Pinayev, private communication.
[9] A. Fedotov et al., in Proc. NAPAC’16, Chicago, IL, USA,

Oct. 2016, pp. 867-869.
[10] V.N. Litvinenko et al., inProc. IPAC’11, San Sebastian, Spain,

Sep. 2011, pp. 3442-3444.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA153

Software Technology Evolution
TUPHA153

769

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


