
PARC: A COMPUTATIONAL SYSTEM IN SUPPORT OF LASER
MEGAJOULE FACILTY OPERATIONS

 J. P. Airiau, S. Vermersch, V. Beau, E. Bordenave, H. Coïc, T.C. Chies, V. Denis,
L. Lacampagne, C. Lacombe, L. Le Deroff, X. Julien, P. Fourtillan, S. Mainguy, M. Sozet

CEA - CESTA, F-33116 Le Barp, France

Abstract
The Laser MegaJoule (LMJ) is a 176-beam laser

facility, located at the CEA CESTA Laboratory near
Bordeaux (France). It is designed to deliver about 1.4
MJ of energy to targets, for high energy density
physics experiments, including fusion experiments.
The first 8-beams bundle was operated in October 2014
and a new bundle was commissioned in October 2016.
The next two bundles are on the way. PARC1 is the
computational system used to automate the laser setup
and the generation of shot report with all the results
acquired during the shot sequence process (including
alignment and synchronization). It has been designed
to run sequences in order to perform a setup
computation or a full facility shot report in less than 15
minutes for 1 or 176 beams. This contribution
describes how this system solves this challenge and
enhances the overall process.

INTRODUCTION
LMJ facility is a very complex physic instrument.

Many advanced technologies and knowledge are used
in this project. All these functions come with dedicated
instrument and software. Based on feedback from
previous laser facility exploitation, the need of
computational system to be able to perform complex
and various computation with heterogeneous software
has been identified. Such a system will insure
performances, modularity and scalability.

MULTIPURPOSE COMPUTATIONAL
SYSTEM

PARC is a generic computational platform [1] with
four main features in charge of:
 Exchanging data (settings and results) with

Control Command System (CCS),
 Executing sequentially heterogeneous code file

from various physical field (laser, alignment,
synchronization) ,

 Distributing computation in order to reduce
execution time (less than 15 min) ,

 Building multi-level reports.

Communication with CCS
PARC is part of the Control Command Application

Layer. It uses available API to read and write the

following data:
 Settings from the central settings DB (GCI),
 Diagnosis results from the central shot DB

(GTIR),
 Logistical data (e.g.: component replacement)

from the central maintenance DB (GMAO).
PARC acts as a slave system of the supervisory

control. It receives web service calls to perform
automatic function (prediction, shot report, etc.).
An internal wrapper has been developed to manage the
data transfer between PARC and CCS (and vice versa).
It is based on a dictionary file describing the source
data (CCS) and the target data (PARC). The wrapper
fulfills three features:
 Type conversion : heterogeneous types from CSS

are converted in PARC type (string, double),
including file conversion (curve, multicurve,
image),

 Unit conversion : heterogeneous units from CSS
are converted in International System of Units
(ISU),

 Data validity or lack: CSS validity attributes are
associated to PARC parameter and a default value
is defined for each expected but missing data.

These features insure to operate computation in a
homogeneous environment (both type and unit).
Specific mechanisms have been developed to propagate
error code and message. The entry dataset consistency
is essential for the computation. It makes the system
stronger to unexpected error.

Computation Sequencer

Many elementary software have been developed for
the LIL facility (LMJ bundle prototype). These small
code modules were characterized by their feature,
interface and language.

Figure 1: Modules and scenario structure.

In order to create an executable sequence composed of
these elementary modules, it is necessary to define a
Common Interface Language (CLI). This language is
used as a container (Figure 1).

L
a

n
g

a
g

e
 I

P
→

I
 in

p
u

t
ite

rf
a

ce

I
→

 P
 o

u
tp

u
t

in
te

rf
a

ce

Module 1

Common
Interface

Language

P

Scenario 1

Media
(RAM or

File System)

Common
Interface

Language

P

L
a

n
g

a
g

e
 C

P
→

C
 i

n
p

u
t

in
te

rf
a

ce

C
 →

 P
 o

u
tp

u
t

in
te

rf
a

ce

Module n

Common
Interface

Language

P

Common
Interface

Language

P

…

1 PARC: French acronym for automatic bundle settings prediction.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEAPL05

WEAPL05
1034

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning

For each language, an interface allows the exchange
with the file system or the memory (RAM). The data
flow uses a simple formalism for an easy access in the
code. The structure of the parameter files (XML) is
mapped on the memory structure. Each module is
composed of an XML description file (I/O variables,
language, feature, link to code file) and a unique code
file.

Computation Distribution

The way to distribute the computation depends on
the number of simultaneous executions expected. The
“granularity level” of the facility requires this
distribution (LMJ, bundle, quad, beam).

Figure 2: Multithreading and distribution.

The LMJ, bundle and quad levels are multithreaded
(67 processes max). Beam level is distributed. This
configuration is based on the observation that most of
the costly operation are done at beam level. This
configuration can be changed. Specific operations at
beam level need multiple processors (Figure 2).
The sequence or scenario is reduced to a simple XML
file that describes the modules used and their
granularity level of execution. We have developed a
pseudo-compiler to generate the CLI code (Python)
between modules. The modules of same granularity
level are grouped in the same script. According to the
configuration and the granularity level, the script
implements a multithreaded execution (MT script) on
the main server or a distributed execution (Distri
Script) managed by SLURM [2] on the cluster. By
default the pseudo compiler generates a sequential code
but it is possible to insert loop instruction (while
module with end criteria) and conditional instruction (if
module with boolean criteria). Execution behaviour
models based on the decorator pattern have been
developed to stop or continue a module execution and
propagate the error or warning information (code and
message).

Reporting
As PARC can produce a massive amount of results

(LMJ, bundle, quad, beam), it is important to be able to
summarize data at each level in a simple page. This
information has to be shared between multiple actors
on the facility. We have decided to use a standard
portable format for the graphical interface: HTML.
Because data to be displayed is the same for a
granularity level (ex.: same results information for each
beam), it is possible to use template to describe the
layout of the graphical interface. The concept of
module has been extended to the GUI. GUI modules
can be used to parametrize a scenario or to display
scenario results. A GUI module is composed of a
description file and a zip file including:
 Scenario template layout files : one or more

HTML file for each granularity with all the data,
 Definition file: an XML file including the link

between HTML identifiers and data identifiers
from PARC DB,

 Code file: generic python file for parametrization
GUI module and reports GUI module.

The execution starts with the loading of each element
used in the GUI page and the link to the DB (Figure 3).
For each element type, a simple HTML model is
loaded from the toolbox. Depending on the context
(ex.: beam level / beam n°1) the HTML element is
built with the corresponding DB data. This element is
combined with the others in the layout and the final
page is rendered by Jinja [3].

Figure 3: GUI Module.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEAPL05

Feedback Control and Process Tuning
WEAPL05

1035

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

SOFTWARE ARCHITECTURE
A 4-Tier architecture has been used for PARC

(Figure 4). The application server (Windows) manages
the exchanges between the client software (Windows)
and the CCS. The computation server manages the
priority (user or CCS request) and the execution of
scenario (Linux). The computations are distributed on
the cluster (Linux). The distributed storage system
GlusterFS gives PARC a shared volume accessible to
every user (Samba/GlusterFS). The size of this volume
is extensible according to the property of linear scaling
of this type of storage. This architecture is hosted on a
specific VLAN interconnected with a 10 Gbps Ethernet
switch.

The CLI chosen is Python. Most of the modules are
written in Python. I/O interfaces have been developed
allowing the execution of IDL and C/C++ modules.
The laser oriented scenarii use the CEA laser software
Miró [4]]. A specific interface has been added to this
software in order to execute Miró simulation inside a
PARC module.

Figure 4: Software architecture.

SUPPORT OF LMJ OPERATIONS
About 15 scenarii are currently used by PARC. The

main users of this platform are the laser, alignment and
synchronization engineers (about 10 engineers). They
can request scenario execution and modify the internal
configuration. Reports can be consulted by almost
every authorized user on the facility. Some external
applications are consumers of PARC results (trends
analysis, component aging, etc.).
The main scenarii are:
 Laser Prediction (2 years / 2500 valid predictions):

It computes the laser settings (50 parameters /
beam) according to the shot request. This scenario
can be run several weeks before the experience but
an ultimate execution is done 24h before the shot
to take into account the configuration changes.

 Automatic shot report (2 years / 3000 reports): It
converts diagnosis raw results in physical values
and does comparison between predicted, measured
and post-simulated signals. It finally generates a
shot report (through the GUI and as a zipped file).

 Calibration (1 years / 50 calibration): This scenario
is used by the engineers to calibrate the simulation
models. It uses fit algorithms on many shot results
in order to fine-tune the model parameters (nightly
run).

Out of standard shot sequence, PARC is used for
machine sequence to configure specific part of the
facility:
 Pre-amplifier module calibration: diagnosis

sensibility, beam splitter coefficient.
 Amplifier section: diagnosis sensibility, gain,

transmission.
 Wave front correction: wave front

characterization.
 Frequency Converter Section : diagnosis

sensibility, crystal cartography
 Final Optic Assembly: damage characterization

(currently done by an external analysis tool:
LENA) waiting for incoming inspection
Diagnosis.

CONCLUSION
The first step of this project started in 2011 and the

conception work in 2013. This project takes his
inspiration from the Laser Performance Operating
Model (LPOM[5]) developed at Lawrence Livermore
National Laboratory for the NIF facility. The
development started in October 2013 and the first beta
release has been deployed in October 2014. The first
stable release has been deployed in March 2015 for the
first experience campaign. The service has not been
interrupted since this date. A new release is launched
each summer during the maintenance period.

The main scenarii are a true substance of 10 years of
experience on laser facility and the work of many
engineers. Although PARC gives the opportunity to
run complex computation in very short amount of time,
the real intelligence is in the scenario. Moreover
PARC, as a platform, allows the development of new
scenario with high performances, scalability and
modularity.

REFERENCES
[1] S. Vermersh et al., “The laser Megajoule facility:

the computational system PARC”, Proc.
ICALEPCS2015, Melbourne, Australia, ISBN
978-3-95450-148938 (2015)

[2] Morris Jette, “Slurm Overview”, Super
Computing 2016, SchedMD – Lehi, UTAH, U.S.

[3] A full featured template engine for Python -
Armin Ronacher - Austria,
http://jinja.pocoo.org/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEAPL05

WEAPL05
1036

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning

[4] Olivier Morice, “Miró: Complete modeling and
software for pulse amplification and propagation
in high‐power laser systems”, Opt. Eng. 42, 1530
(2003).

[5] M.J. Shaw et al., “Computational Modeling in
Support of National Ignition Facility Operations”,
Proc. ICALEPCS2001, WEAP063,
Physics/0111036 (2001).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEAPL05

Feedback Control and Process Tuning
WEAPL05

1037

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

