
SPIN DYNAMICS IN MODERN ELECTRON STORAGE RINGS:
COMPUTATIONAL ASPECTS

INTRODUCTION
In [1] we report on our spin/polarization project for un-

derstanding the possibility of polarization for the next gen-
eration of the high energy particle (HEP) accelerators, e.g.,
the Future Circular Collider (FCC) and Circular Electron
Positron Collider (CEPC). The physics background and the
basic model to compute the polarization is discussed there.
The starting point is what we call the full Bloch equation
(FBE) in the Lab frame. This model includes synchrotron
radiation and the concomitant depolarization from the radi-
ation caused by damping and diffusion as well as Sokolov-
Ternov spin-flip polarization effects and its Baier-Katkov
generalization. Ignoring spin flip we obtain the reduced
Bloch equation (RBE) which we believe contains the most
difficult part of the FBE to integrate numerically. We then
introduce the 3 degree of freedom (DOF) reduced Bloch
equation (RBE) in the beam frame in the first section be-
low. We further discuss the general computational issues
and give an estimates for what can be done with current
computational techniques. For d = {1, 2, 3} DOF the po-
larization density has (2d + 1) independent variables. For
simplicity, suppose that each of the space-like variables has
been discretized on a grid with N grid-points, then the com-
putational cost of each time step will scale no better than
O(N2d). The presence of parabolic terms in the governing
equations necessitates implicit time stepping and thus so-
lutions of linear systems of equations. For a fully coupled
3 DOF problem this will bring the per time step cost to
O(N6q), with 1 ≤ q ≤ 3, depending on the algorithms used
for the linear solve. However, only algorithms with q ≈ 1 are
feasible (for Gaussian elimination q = 3). Fortunately, as we
outline below, the structure of the averaged equations (e.g the
parabolic terms are uncoupled from mode coupling terms)
allows the efficient parallel implementation. Further, we ex-
ploit the decoupling by evolving the resulting ODE system
with the additive Runge-Kutta (ARK) method. Described
in [2] ARK methods are high order semi-implicit methods
that are constructed from a set of consistent Runge-Kutta
(RK) methods. In the RBE the parabolic part of the equation
is treated with a diagonally implicit RK method (DIRK) and
the hyperbolic mode coupling part is treated with an explicit
RK (ERK) method which does not require a linear solve.
The ODE system in time can be evolved independently for
each Fourier mode resulting in a computational cost for each
timestep that scales as O(N3q) per mode.

We first summarize the 3 DOF problem and 2 DOF prob-
lem from [1]. Then we describe the new algorithm on the
∗ Corresponding author: obeznosov@unm.edu

example of 1 DOF model with parameters taken from the
Hadron-Electron Ring Accelerator (HERA). Using that the
RBE in 1 DOF can be solved exactly we demonstrate the ac-
curacy of the algorithm by compering the exact polarization
to the polarization measured by integrating the numerical so-
lution in space. Further, we present the results showing that
achieved accuracy of the algorithm for the polarization den-
sity after 1500 turns for varying discretization parameters
which allows us to conclude that the algorithm is feasible
for the accurate simulation of the 3 DOF model.

RBE IN 3 DEGREES OF FREEDOM
Consider the system of Langevin equations for the orbital

phase space variable Y ∈ R6 and the spin variable ®S in the
beam frame given by

Y ′ = A(θ)Y +
√
ε
√
ω(θ)e6ξ(θ), (1)

®S′ = ΩY (θ,Y ) ®S. (2)

Here θ is the accelerator azimuth and ξ is a version of the
white noise process and e6 = (0, 0, 0, 0, 0, 1)T . Also A(θ)
is a 6 × 6 matrix encapsulating radiationless motion and
the deterministic effects of synchrotron radiation (see, e.g.,
[3, eq. 5.3]). Moreover ΩY (θ,Y ) in the Thomas-BMT term
is a skew-symmetric 3 × 3 matrix linear in Y and ω(θ) is
real valued. Note also that A(θ), ΩY (θ, y) and ω(θ) are
2π-periodic in θ.

The RBE for the polarization density ®ηY is

∂θ ®ηY = (LY + LY,TBMT )®ηY, (3)

where

LY =

Drift︷                  ︸︸                  ︷
−

6∑
j=1

∂yj

(
A(θ)y

)
j

+

Diffusion︷        ︸︸        ︷
1
2
ωY (θ)∂

2
y6
,

LY,TBMT ®ηY = ΩY (θ, y)®ηY .︸        ︷︷        ︸
Spin

Our ultimate aim is to understand the solutions of (3). The
main quantity of interest is the polarization of the bunch

®P(θ) =
∫
®ηY (θ, y)dy.

However, as noted in the introduction, numerical discretiza-
tion of (3) will have the an enormous computational cost. To
simplify the problem we first use the method of averaging.
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We split A = A + εδA to isolate the Hamiltonian part A.
Then by using the fundamental solution matrix X(θ) of the
unperturbed problem, e.g

X ′ = A(θ)X, (4)

the method averaging Y -frame transforms to a V-frame as-
sociated with averaged problem posed in terms of the new
variable V . In the V-frame the polarization density ηV satis-
fies the RBE

∂θ ®ηV = (LV + LV,TBMT )®ηV , (5)

where

LV =

Drift︷              ︸︸              ︷
−ε

6∑
j=1

∂v j (D̄v)j +

Diffusion︷              ︸︸              ︷
ε

2

6∑
i, j=1
Ēi j∂vi ∂v j , (6)

LV,TBMT ®ηV = ΩY (θ, X(θ)v)®ηV︸              ︷︷              ︸
Spin

. (7)

and

D̄ =
©­«
DI 02×2 02×2
02×2 DI I 02×2
02×2 02×2 DI I I

ª®¬ , (8)

Dα =

(
aα bα
−bα aα

)
, (α = I, I I, I I I), (9)

with Ē = diag(EI, EI, EI I, EI I, EI I I, EI I I ) and aα ≤ 0
and EI, EI I, EI I I ≥ 0. The RBE in the V-frame has
θ-independent uncoupled parabolic operators and that will
be exploited by our numerical approach.

RBE IN 2 DEGREES OF FREEDOM. FLAT
RING

We now consider the case of two degrees of freedom in a
flat ring with FODO cells and cavities. Moreover the case
of a flat ring allows us to use a one-dimensional approach to
spin which in turn allows us to average over orbit and spin.
In our flat ring model ΩY has the simple form

ΩY (θ,Y ) = −aY (θ)YJ, J =
©­«

0 1 0
−1 0 0
0 0 0

ª®¬ .
Here Y ∈ R4 represents the horizontal and longi-
tudinal motions which are uncoupled from the ver-
tical motion in the flat ring model. It is conve-
nient to use spherical coordinates as spin variables
(i.e., ®S = (cos(Ψ) sin(Φ), sin(Ψ) sin(Φ)), cos(Φ))T ). In the
Y -frame system of Langevin equations then becomes

Y ′ = (A(θ) + εδA(θ))Y +
√
εω(θ)(0, 0, 0, 1)T ξ(θ), (10)

Ψ
′ = aY (θ)Y, (11)
Φ
′ = 0. (12)

Here the row vector aY (θ) is 2π-periodic in θ.
Following the approach outlined in previous section, we

apply the method averaging and transform the current frame
to a W-frame associated with an averaged problem posed in
terms of a new variable W . W now incorporates both spin
and phase space variable. In the W-frame the polarization
density ®ηW satisfies the RBE

∂θ ®ηW = − ε

2∑
j=1

∂wj

((
DI (w1,w2)

T

)
j

®ηW

− ε

4∑
j=3

∂wj

((
DI I (w3,w4)

T

)
j

®ηW

+
ε

2
EI

(
∂w1∂w1 + ∂w2∂w2

)
®ηW (13)

+
ε

2
EI I

(
∂w3∂w3 + ∂w4∂w4

)
®ηW

− ε

4∑
j=1
D̄5jwjJ ®ηW −

ε

2
Ē55 ®ηW + ε

4∑
j=1
Ē j5J ®ηW ,

where

D̄ =

©­­­«
DI 02×2 02×2
02×2 DI I 02×2
D̄51 D̄52 D̄53 D̄54 01×2

01×2 01×2 01×2

ª®®®¬ , (14)

Ē =

©­­­­­­­«

EI 0 0 0 Ē15 0
0 EI 0 0 Ē25 0
0 0 EI I 0 Ē35 0
0 0 0 EI I Ē45 0
Ē15 Ē25 Ē35 Ē45 Ē55 0
0 0 0 0 0 0

ª®®®®®®®¬
. (15)

HereDI,DI I are 2× 2 matrices of the form (5) and EI, EI I
are nonnegative. For Gaussian processes associated with
(10)-(12) the polarization density ®ηW can be computed ana-
lytically.

RBE IN 1 DEGREE OF FREEDOM
We now consider the case of one degree of freedom using

the model studied in [4,5]. The one degree of freedom model
here is obtained from the two degrees of freedom flat ring
model of the previous section by setting, in (14) and (15),

0 = DI I = D̄52 = D̄53 = D̄54 = EI I = Ē25 = Ē35 = Ē45 ,

DI = −I2×2 , EI = 1 , Ē15 = −D̄51 , Ē55 = (Ē15)
2. (16)

One can justify the step from (14) and (15) to (16) as a
good approximation by applying the betatron-dispersion for-
malism to the flat ring model [6]. With (16) the variables
W3,W4,W6 are uncoupled so that we are left with the follow-
ing one degree of freedom system of Langevin equations for

13th Int. Computational Accelerator Physics Conf. ICAP2018, Key West, FL, USA JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-ICAP2018-MOPAF04

D-2 Dynamics – Spin, Precision, Space Charge
MOPAF04

147

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



the orbital variables W1,W2 and the spin variable W5:

©­«
W ′1
W ′2
W ′5

ª®¬ =ε ©­«
−1 0 0
0 −1 0
g 0 0

ª®¬ ©­«
W1
W2
W5

ª®¬
+

√
ε

2
©­«

1 0
0 1
−g 0

ª®¬
(
ξ1
ξ2

)
,

where g = D̄51 = −Ē15 and ξ1, ξ2 are statistically inde-
pendent versions of the white noise process. Denoting the
polarization density for our one degree of freedom model
by ®η, one can show in analogy to the previous section that it
satisfies the RBE

∂θ ®η = ε

(
∂w1 (w1 ®η) + ∂w2 (w2 ®η)

)
+
ε

4
∂w1∂w1 ®η (17)

+
ε

4
∂w2∂w2 ®η − εgw1J ®η −

ε

2
gJ∂w1 ®η −

ε

4
g2 ®η,

where ε ≈ 0.008 and g ≈ 2.07 for the HERA ring. We
present the numerical approach to solve (17) next.

NUMERICAL APPROACH
We first transform (17) to polar coordindinates using

w1 = r cos ϕ, w2 = r sin ϕ,
∇ · (Wηl) = (2 + r∂r )ηl,

∇ · ∇ηl = (∂
2
r + r−1∂r + r−2∂2

ϕ)ηl,

∂w1ηl = (cos ϕ
∂

∂r
−

sin ϕ
r

∂

∂ϕ
)ηl

and the RBE in 1 DOF becomes

∂tηl =
ε

4

[(
(8 − g2) + (4r + r−1)∂r + ∂

2
r + r−2∂2

ϕ

)
ηl (18)

+2gJlm

(
2r cos ϕ + cos ϕ∂r − r−1 sin ϕ∂ϕ

)
ηm

]
,

l,m = 1, 2, l , m,

We pose (18) on a disk r ≤ rmax, ϕ ∈ [0, 2π]. The boundary
conditions are periodic in ϕ and we take rmax large enough
to impose homogenous Dirichlet boundary conditions at
r = rmax. Here and in the following we drop arrows and
replace θ by t. We seek approximations to η on a Chebyshev
grid in r and a uniform grid in ϕ,

ri = − cos
(
πi
nr

)
, i = 0, . . . , nr,

ϕj = j 2π
nϕ
, j = 1, . . . , nϕ,

and expand it in a Fourier series in the ϕ direction:

η(t, ri, ϕj) ≈

nϕ/2∑
k=−nϕ/2+1

η̂(ri, k, t)e−ıkϕ j . (19)

For the kth Fourier mode we determine η̂(t, r, k) from

∂t η̂l =
ε

4

[(
(8 − g2) + (4r + r−1)∂r + ∂

2
r − r−2k2

)
η̂l (20)

+gJlm

(
(2r + ∂r )(η̂−m + η̂

+
m) − r−1 (

(kη̂m)− − (kη̂m)+
) )]

,

where l,m = 1, 2, l , m and

η̂l
− = η̂l(t, r, k − 1), η̂l

+ = η̂l(t, r, k + 1).

Now denote by ûl(t, k) the grid function on the r grid for
a fixed mode, i.e. ûl(t, k) = [ûl(t, r0, k), . . . , ûl(t, rnr , k)]T ,
describes the lth component of η̂. Then for each component
we have

dûl(t, k)
dt

=
ε

4
[
Fk
I (ûl) + JlmFk

E (ûm)
]
. (21)

Here FI and FE are linear operators representing the Fokker-
Planck operator and spin terms

FI (ûl) =
(
(8 − g2)I + (4R + R−1)D1 + D2 − R−2k2

)
ûl,

FE (ûm) =
(
(2R + D1)(û+m + û−m) − R−1((kûm)− − (kûm)+

)
.

Here I is the (nr + 1) × (nr + 1) identity matrix, R =
diag(r0, . . . , rnr ), D1 and D2 are spectral differentiation ma-
trices. The entries of the differentiation matrices are found
by the techniques for constructing finite difference approxi-
mations of any order of accuracy, for any order of the deriva-
tive and on general grids described by Fornberg in [7]. To
be precise, the coefficients are computed using a numeri-
cally stable recursion relation derived from the Lagrange
interpolant associated with the grid points (see also the sub-
routine weights.f provided in [7]). To evolve in time we
use a fourth order additive N-stage Runge-Kutta scheme
(ARK), see e.g. [2]. Let ûν(k) = û(k, ν∆t) then, for each
mode, we compute

ûν+1 = ûν +
N∑
s=1

γsks, (22)

ks =
ε∆t
4

[
FI

(
ûν +

s∑
l=1

αslkl

)
+ FE

(
ûν +

s−1∑
l=1

βslkl

)]
.

Thus at each step we compute uν+1 given uν . The general
N-stage ARK scheme combines N-stage diagonally implicit
Runge-Kutta scheme (DIRK) with N-stage explicit Runge-
Kutta scheme (ERK) of a same order of accuracy. The
coefficients αsl, βsl, γs can be found so that the combined
schemes are consistent. For higher number of DOF the
algorithm stays the same.

As indicated in the introduction, the cost of the solve in
(22) depends on the choice of algorithm but can always be
split into an initial cost (e.g. LU-factorization in addition to
the FFT) and a solve cost (e.g. back and forward substitution).
Ignoring the startup cost, which can be amortized over many
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time steps, the cost per time step is that of nϕ solves of size
nr for each stage, i.e. O(nϕnqr ).

For 3 DOF the complexity estimate becomes

C = O(n3
ϕn3q

r ).

Assuming that nr = nϕ = N we find that for N = 50 and
q = 1, 4/3, 2 the cost C = 1.5 · 1010, 7.8 · 1011 and 2 · 1015,
respectively. As a single modern processing unit may be able
to carry out O(108 − 109) arithmetic operations per second
it appears plausible that an efficient parallel implementation
can result in time-per-time step on the order of one to several
seconds for q = 4/3. Note that there are several modern
solution techniques, like the Hierarchical Poincaré-Steklov
operator technique by Martinsson [8] that can reach q ≈ 1
for spectrally accurate discretizations.

NUMERICAL RESULTS
Example 1: 1 DOF model
Here the reduced Bloch Equations (17) can be solved exactly
[9]. For example if

η(0,w) =
2
π

(
cos(ψ0)
sin(ψ0)

)
e−2(w2

1+w
2
2 ). (23)

then

η(t,w) =
2
π

eΣ2

(
cos(ψ0 + Σ1w1)
sin(ψ0 + Σ1w1)

)
e−2(w2

1+w
2
2 ), (24)

Σ1(t) = −g(1 − e−εt ), Σ2(t) =
g2

8
(e−2εt − 1),

The polarization vector of the bunch at time t is

P(t) =
∫
R2
η(t,w)dw,

and
|P(t)| = e−

1
8Σ

2
1(t)eΣ2(t). (25)

This example was used to verify that the polarization is
computed accurately. The polarization |P(t)| obtained by
integrating the numerical solution, see Fig. 1. The result is
very close to the exact polarization (25), within the error we
expect.

In Fig. 2 the numerical solution η1 snapshots are taken
at initial time and after 25, 250 and 1500 turns (10 turns
HERA ring correspond to t = 4) showing that the solution
approaches the equilibrium

ηeq(w) =
2
π

e−
g2
8

(
cos(ψ0 − gw1)
sin(ψ0 − gw2)

)
e−2(w2

1+w
2
2 ). (26)

Example 2: Spectral convergence for 1 DOF model
To confirm the spectral convergence in r and ϕ we evolve
(18) with the initial data taken to be the exact solution (24)
at t = 0. It has an equilibrium solution (26) making it a
good test case for the numerical method. To be precise,
the errors displayed in Fig. 3 are the maximum deviation
from the exact solution (24) taken over all grid points and
all the variables at t = 5/ε which corresponds to 1500 turns.
The results clearly show the spectral accuracy of the spatial
discretization.

0.3

0.4

0.6

1

300 600 900 1200 1500

|P
(t
)|

Number of turns

Figure 1: Polarization in 1 DOF model computed from the
numerical solution.

Figure 2: Solution η1 at time t = 0, 10, 100, 600

DISCUSSION AND NEXT STEPS

We are preparing an extended version of this brief note for
an archival journal which will complete the work on the re-
duced Bloch equation in 2 DOF. An important aspect will be
a more detailed discussion of the algorithm. The codes will
be made available in a repository. A goal is to make our work
easily reproducible. Next we will incorporate the spin flip by
considering the full Bloch equations and do a careful study
of the depolarization and polarization effects for the simple
lattice. This will include depolarization and polarization
times and equilibrium. We will then study a more realistic
lattice in the 2 DOF case and begin the 3 DOF work, where
a parallel algorithm will surely be important/necessary.
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Figure 3: Convergence for the 1 DOF model.
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