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Abstract 
A new particle-moving algorithm for particle-in-cell 

simulation of plasma is developed based on the Linear 
Multistep Method. The conventional and the new 
algorithms are investigated by numerical experiments, 
which are conducted in three typical fashions of the 
electron motions in electromagnetic fields, that is, 
cyclotron in homogeneous magnetic field, drift in Ε Β  
field and motions in inhomogeneous magnetic field. The 
new algorithm not only improves the accuracy but also 
relaxes the time step condition for the simulation. It can 
increase the computation efficiency. 

INTRODUCTION 
One of the most important parts of the PIC plasma 

simulation process is the particles pusher [2, 3]. The 
typical method of the simulation uses the Boris leapfrog 
algorithm to push charged particles because of its 
simplicity [4]. When there is Lorentz Force, it will lead to 
the decline of the accuracy, since it has to use the velocity 
of integer points to estimate that of half integer points. A 
new particle-moving algorithm is developed based on the 
Linear Multistep Method [5]. The conventional and the 
new algorithms are investigated by numerical 
experiments [6].. 

SIMULATION METHOD 
We developed a new numerical scheme for particles 

movement which is as simple as the Leapfrog scheme but 
more accurate. In the Leapfrog method the particle 
velocity or the position is only calculated from the 
previous step. This is single step method. With the linear 
combinations of the velocity and acceleration on the 
former time steps which has been calculated, the new 
algorithm is multistep method that may has a high 
accuracy and takes the follow form: 

2
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where r is the displacement, 0 , 1 , 0 , 1 , 0 , 1  are 
undetermined coefficients. As we know, the first-order 
derivative of r  is the velocity and the second-order 
derivative of r  is the acceleration. The Linear Multistep 
Method is using the Taylor series expansion method to 
construct the function. Assuming the value of r  at 1nt is 
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Figure 1: The linear multistep method. 

expansion at nt , as follows: 
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Expanding the 1nr  at nt  and taking it to the right of Eq.3: 
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Compare the coefficients of the Eq. 4 and Eq. 5, we get 
the follow equations: 
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All the coefficients can be get by solving the Eq. 6,  
310 , 321 , 140 , 161 , 20 , 41  

They are so large that can accumulate and amplify the 
errors.  It will lead the instability of the algorithm. If we 
solve the first five equations and let 1 be the variable, 
then the others can be expressed as: 
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The fourth order accuracy of the r can be obtained when 
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taking the value of 1  from 0 to 1. If 1 1 , the Eq. 3 is: 
2

1 1 1(3 ) (7 17 )
2 12n n n n n n

h hr r r r r r       (7) 

The truncation error is: 
5 (5) 6

1
31 ( )
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Using the same method, the formula of velocity has the 
form: 

1 0 -1 1 1 1 0 1 1( )n n n n n nhv v v v v v     (9) 
Eq. 9 is a two-step implicit scheme if 1 0 . We should 
predict the 1nv first for solve the 1nv  using the two-step 
explicit scheme: 

1 0 -1 1 0 1 1( )n n n n nhv v v v v       (10) 
Usually the implicit and the explicit scheme should 

have the same order, so the predictor- corrector function 
is: 
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The Eq. 11 is a two-step scheme with three order 
accuracy. 

Now the expression of the new algorithm is get. The 
precision of the displacement is the fourth order and the 
velocity is the third order that is very close to the fourth 
order Runge-Kutta method but more concise. 

RESULT COMPARISON 
The comparison of the Linear Multistep Method with 

the leapfrog method is discussed through the numerical 
experiments, which are conducted in three typical 
fashions of the electron motions in electromagnetic fields, 
that is, cyclotron in homogeneous magnetic field, drift in 
Ε Β  field and motions in inhomogeneous magnetic 
field. 

Cyclotron in Homogeneous Magnetic Field 
 This test involves calculation of the electron trace 

under the effect of uniform magnetic field. The initial 
velocities 0xv , 61.0 10 m/syv , 0zv  are applied to 
the electron. 

The magnetic field with the constant value of 0.004T is 
installed in the system oriented in vertical z direction, 
when the electric field is set up to zero. The electron 
should perform the cyclotron motion with gyration radius 

Lr (in this test 0.00142mLr ) and the cyclotron period T 

(in this test 98.93 10 sT ). Figure 2(a) shows the 
cyclotron track of the electron in the magnetic field when 
the time step / 50t T . As we see, the trajectory 
calculated from the linear multistep method is almost 
equal to the analytical. That means the accuracy of 
electron orbits is very high. The energy of electron should 
be unaffected by the homogeneous magnetic field, while 
the energy increment should be zero, that is 0/ 0W W   
The accuracy in electron energy calculating when

/ 50t T  has been compared in the two algorithms. The 
energy increment of the two algorithms as the function of 
amount of the time step is presented in Figure 2(c). 

 
Figure 2: The comparison of the linear multistep method 
with the leapfrog method and the Runge-Kutta. (a) 
Cyclotron track of electron in magnetic field. (b) Energy 
increment as the function of amount of the time step. 

At the end of the 45 10  time step, the energy 
increment of the linear multistep method is under 

 and the Leap Frog method is about 25 times. 
That means the Linear Multistep Method can keep long 
time energy conservation, which is much better than the 
other two methods. 

Drift in Constant Ε Β  Field 
In the preceding section we have proved the correctness 

of the electron motion integrator in the presence of the 
constant magnetic field. The next step is to demonstrate 
accuracy of the electron trajectories in the 
electromagnetic field system. In this test the same 
constant magnetic field is used, while the constant electric 
field of 41.0 10 V/m  is set in -y direction. The velocity 
distribution of electron are also same. This velocity 
corresponds to the guiding centre drift velocity of the 
electron:  

2E Bv
B

E B                                (12) 

When the time step /100t T the trajectory of the 
electron is shown in Figure 3(a). It is nearly the same with 
the analytical. The electron clearly execute E B  drift 
and the guiding centre of the drift motion movies with the 
same velocity as expected. Figure 3(b) shows the position 
errors of the two methods. The position error of the linear 
multistep method is much lower than the Leap frog.  
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Figure 3: Test in constant Ε Β  field. (a) Drift track of electron in constant Ε Β  field. (b) Position errors of the three 
methods. (c) Energy increment of the three methods. 

 
Figure 4: Test in inhomogeneous magnetic field. (a) Drift track of electron in inhomogeneous magnetic field. (b) 
Position errors of the three methods. (c) Energy increment of the three method . 

Figure 3(c) shows the Energy increment of the two 
methods that gives a same result. 

Motions in Inhomogeneous Magnetic Field 
As the extension of the first two test, in this test the 

magnetic field is inhomogeneous in the z direction as a 
function of x is given as 0 04 0 004 T( ) . . ( )zB x x , while 
the constant electric field of 41.0 10 V/m  is set in +y 
direction. The initial velocities is also same and the initial 
position is 0 0 0x y . /100T  is set as time step, and T 
is the cyclotron period of the initial time. The guiding 
centre drift velocity of the electron is changed with the 
time and position (see Figure 4(a)). As can been see in 
Figure 4(b) and Figure 4(c), the Linear Multistep Method 
also has a much higher precision than the Leap frog 
method. 

CONCLUSION 
From the comparison, the precision of the linear 

Multistep method is much better than the Leapfrog 
method in the same time step with a very simple format. 
But the precision of this method maybe a little worse than 
the fourth order Runge-Kutta method because the 
precision of the velocity is three order. Note that in the 

beginning we should calculate the value on the second 
point with the fourth order Runge-Kutta method for 
starting this algorithm [7]. As its high precision and 
simply format it can be used in the particle-in-cell 
simulation of plasma directly.  
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