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Abstract 
Phase retrieval problem occurs in a number of areas in 

physics and is the subject of continuing investigation [1-

15]. One dimensional case, for example, an electron 
bunch temporal profile reconstruction, is particularly 
challenging. Frequently applied methods, are reliable if 
the Blaschke phase [10-12] contribution is negligible. 
This, however, is neither known a priori nor can it be 
assumed for an arbitrary profile. In this work we present a 
novel algorithm with additional constraints which gives 
reproducible, stable solutions for profiles, both artificial 
and experimental, otherwise unresolved by existing tech-
niques. 

INTRODUCTION 

Accurate knowledge of the longitudinal (time) profile 
of an electron bunch is important in the context of linear 
colliders and X-ray FELs, but it is a parameter that be-
comes progressively more difficult to determine for fs-

long bunches [1-7]. These, however, are the bunch lengths 
expected from the next generation of high-gradient parti-
cle accelerators which will be based on laser-plasma or 
wake-field acceleration. Apart from the desirability of 
determining the profile in a non-destructive manner, and 
because of the low repetition rate of these accelerators, it 
is equally desirable to be able to achieve this in a single 
shot. In this paper we will discuss the technique to recov-
er phase information from power spectrum which one can 
measure using different spectroscopic technique.  

The problem of retrieving the phase of a signal from a 
measurement of its power spectrum alone is well known 
and has been under investigation for a few decades. Some 
information about the missing phase can be retrieved 
from the so-called ‘minimal’ phase calculated by the 
Kramers-Kronig (KK) method under the assumption that 
the signal is a holomorphic function. There are number of 
iterative techniques [8, 9, 13-15] which also allowing 
recovering missing phase and reconstructing the bunch 
profile. In this work we discuss the method, which com-
bine KK and iterative techniques. The KK feeds iterative 
method information about initial (minimal) phase and it is 
also used as a boundary condition limiting possibilities of 
generating profile with unphysical phase. The conditions 
which indicates that algorithm is converging to a solution 
and the second that this solution is likely (i.e. most proba-
ble) to be the correct one will be also discussed.  

ALGORITHM DESCRIPTION 

The new algorithm is based on a combination of the 
minimal phase θm and an iterative procedure (with repeat-
ed iterations between the frequency and time domains). 
The Kramers-Kronig (KK) method is used to calculate the 
minimal phase. We assume for clarity reason that the 
power spectrum is known (measured) on the whole fre-
quency domain. It is important to note that the Blaschke 
contribution (if it exists) is a monotonically increasing 
function of frequency and that the minimal phase θm pro-
vides a lower limit for the possible phase values. The new 
phase-constrained iterative (PCI) algorithm is named to 
indicate this new phase boundary condition. In addition to 
the minimal phase, the integral value F (bunch charge) is 
also used as a limiting condition and to monitor the con-
vergence (as discussed below) to the solution. The profile 
recovered from the minimal phase also provides an initial 
estimate of the support function (see below). These points 
listed above are essential for the new algorithm operation. 
We note that displacements along the time axis, mirror 
imaging of the temporal profile or equivalently, the sign 
of the spectral phase cannot be determined unambiguous-
ly. We will not be addressing those issues as it is only for 
few cases these variations have physical significance. The 
features of the PCI algorithm are summarised by (2). The 
algorithm iterative part is similar to the Gerchberg-Saxton 
(GS) and Hybrid Input-Output (HIO) group of algorithms 
and can be summarized as follows: 

௡݂+ଵሺ�ሻ = {  
  ݂′௡ሺ�ሻ  �݂  ݂′௡ሺ �ሻ א Υ௡݂ሺ�ሻ − �݂′௡ሺ�ሻ �݂   ݂′௡ሺ �ሻ ב Υ�௡ = �′ �݂ �′ > �௠�௡ = �௠ �݂  �′ ≤ �௠    (1) 

 

where Υ is the set of constrains of function f(t). In this 

letter the abbreviation FT and FT
-1

 are used to denote the 

forward and the inverse Fourier Transforms respectively. 

The above expressions define the result of the n+1 itera-

tive step where fn and n denote the modulus and phase 

respectively of the time profile function calculated by FT 

from the frequency to time domain, while m is the mini-

mal phase. 

1. First, the measured amplitude spectrum and �௠ are 

used for the initial FT
-1

 e.g. from the frequency into the 

time domain to derive the zeroth order approximation ݂′଴ሺ�ሻ to the unknown profile f(t). Any values of that 

function inside the defined window () which do not 
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satisfy the constraints ݂′௡ሺ �ሻ ב Υ (e.g. ݂′௡ሺ �ሻ < Ͳ for 

electron bunch profiling) are corrected.  

2. The FT of ଴݂ሺ�ሻ back into the frequency domain gives 

g() = �ሺ�ሻ݁��ሺ�ሻ, �ሺ�ሻ = |݃ሺ�ሻ| 
3. If m then is set equal to m. The values of the 

modulus are discarded. 
4. The original values of the moduli and the new phases 

are used for a FT
-1

 back into the time domain leading to ݂′ଵሺ�ሻ and after satisfying the constraint conditions for 

the function f, a new approximation f1(t) of the unknown 

f(t) is obtained. 

5. Above steps are repeated and at each iteration, the 

values of the quantities are checked ଵ� ሺ∫ | ௡݂+ଵሺ�ሻ − ௡݂ሺ�ሻ|݀�ሻ ≤ ଵ�଴ߝ      (2) ଵ� ሺ∫ ௡݂+ଵሺ�ሻ݀� − ��଴ ሻ = ௡+ଵߜ ≤  ଶ     (3)ߝ

where F is the independently known value of the integral 

of the target function f(t); (F=1 for a charge-normalised 

distribution), ߝଵ,ଶ are the predefined acceptable errors 

appropriate for a specific experiment and ߝଵ,ଶ<<1. The 

expression (2) is the derivative of (3) (i.e. ߜ௡+ଵ − ௡ߜ  ଵሻ and the expressions represent the relative (2) andߝ>

absolute (3) integral errors. The (2) is an indication that 

the algorithm is converging to a solution and the second 

that this solution is likely (i.e. most probable) to be the 

correct one.  
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Figure 1: Reconstructions of “synthetic” function (super-

position of two Gaussian functions (dotted line) of vary-

ing widths (i), amplitudes (Ai): �ଵ = ͳ;  �ଶ = Ͳ.ʹ;ଵ =Ͳ.ͲͲ8ͷ;ଶ = Ͳ.Ͷʹͷ;  �ଵ = Ͳ.ͲͶ͵; �ଶ = Ͳ.ͷͶ͵) based on: 

(a) non-PCI (dashed line) and PCI (solid line) algorithms; 

(b) minimal phase retraction (solid line) algorithms.  

PROFILE RECONSTRUCTION USING 
PCI ALGORITHM 

To compare new algorithm with other iterative as well as 

Kramers–Kronig techniques, we have reconstructed a 

number of ‘synthetic’ profiles generated by superposition 
of two Gaussian functions of varying widths (i) and 

amplitudes (Ai) ݂ =� ∑ ��݁−ሺ�−��ሻ2/ଶ��2�=ଶ�=ଵ   (Fig 1-4)    and 

the Lorentz function ݂ =� ଵ� �ሺ�−�0ሻ2+�2  (Fig. 5); the 

Gaussians are centred at ti and the Lorentzian at t0 (see 

Fig. 1-5). To compare different algorithms with PCI 

we used conditions (2) and (3).  

 

      
 

       
 

Figure 2: Reconstructions of “synthetic” function (super-

position of two Gaussian functions of varying widths (i) 
and amplitudes (Ai): �ଵ = ͳ;  �ଶ = Ͳ.͸;ଵ = Ͳ.ͳ͵;ଶ =Ͳ.ʹͳ;  �ଵ = Ͳ.͸Ͷ; �ଶ = ͳ.͸Ͷ) based on: (a) non-PCI 

(dashed line) and PCI (solid  line) algorithms; (b) mini-

mal phase retraction (solid line) algorithms.  

 

       

        
 

Figure 3: (a) The values of conditions (2) and (3) as a 

function of iteration number for the PCI algorithm. (b) 

The time profiles recovered at the end of the process 

when both conditions are satisfied. 

In all cases shown the original function is indicated 
by the dotted lines. We note that the conventional iterative 
algorithm generates different solutions for each run and it 
requires “expert knowledge” to select an appropriate 
solution. In Fig. 1b the profile reconstructions using 
minimal is shown and compared with the original func-
tion. The minimal phase approach generated a perfect 
result in this case but it is unknown a priori if the minimal 
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phase is sufficient. We note that in our studies the PCI 
algorithm gave at least as good, and usually better results 
than the non-PCI algorithms. The figures(1a-5a) show 
the profiles reconstructed by means of PCI and non-PCI 
iterative algorithm [15], as well as the original function. 
Figures (1b-5b) show the profile reconstruction based 
solely on minimal phase together with the original profile. 
The case of Fig. 2 demonstrates the strong deviation of the 
profile reconstructed using non-PCI algorithm from the 
original, while the PCI procedure delivers an acceptable 
approximation to the given function. 

        

        
 

Figure 4: As in Fig.2 but with � = ͳ;  � = Ͳ.͸;ଵ ଶ ଵ=Ͳ.ͳ͵;ଶ = Ͳ.ʹͳ;  �ଵ = Ͳ.͸Ͷ; �ଶ = ͳ.͸Ͷ). The reconstruc-

tions are based on: (a) a non-PCI (dashed line) and the 

PCI (solid line) algorithms; (b) minimal phase reconstruc-

tion (solid line). The dotted line is the original function. 

        

        
 

Figure 5: Reconstruction of a Lorentz-type function ( = 

0.3; t0=0) based on: (a) a non-PCI (dashed line) and the 

PCI (solid line) algorithms; (b) minimal phase reconstruc-

tion (solid line). The dotted line is the original function.  

CONCLUSION  
We have developed a new phase retrieval algorithm 

based on repeated iterations between the time and fre-
quency domains, with constraints applied in each domain. 
The two novel features are: (a) the use of the minimal 

phase as a lower limit for the missing phase and (b) the 
use of conditions (2) and (3) as criteria for the conver-
gence of the iterations to the most probable and correct 
solution. In all the cases that we have studied, the new 
algorithm (PCI) gave at least as good and usually better 
results than the non-PCI algorithm. In certain cases the 
minimal phase method would have been adequate for an 
accurate reconstruction but in both cases the PCI algo-
rithm provided answers that were close to those derived 
from the Kramers-Kronig method. Since the existence or 
otherwise, of a significant Blaschke phase contribution 
cannot be deduced experimentally or known a priori, the 
PCI algorithm provides an acceptable and reliable recon-
struction which does not depend on initial assumptions.  
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