
NUMERICAL COMPUTATION OF TRANSPORT MATRICES OF
AXISYMMETRIC RF CAVITIES FOR ONLINE BEAM DYNAMICS

APPLICATIONS
V. Balandin∗, W. Decking, N. Golubeva, DESY, Hamburg, Germany

Abstract
We describe internally symplectic algorithm for the nu-

merical calculation of the focusing matrices of axisymmetric

standing wave TM cavities, which we developed for the on-

line modeling of the beam dynamics in the European XFEL

linac.

INTRODUCTION
The RF focusing effect cannot be neglected in many on-

line beam dynamics applications and, especially at relatively

low particle energies, has to be taken into account at least

in the orbit correction and beam matching programs. Un-

fortunately, known analytical expressions for the transfer

matrix of a cavity are derived under many simplifying as-

sumptions including the assumption that the particle beam

is ultra-relativistic. So the actual precision of the analytical

models has to be carefully checked for each specific case

and, if the accuracy will be found insufficient, a decision

has to be made about the further course of action (see [1–5]

and references therein for more discussions). It seems that

the most universal way out of this situation is to be oriented

from the beginning on the numerical computation of the

cavity transfer matrices, and in this paper we describe new

efficient algorithm for the numerical calculation of the refer-

ence particle dynamics and of the 6 × 6 focusing matrices
of the axisymmetric standing wave TM cavities, which we

developed for the online modeling of the beam dynamics in

the European XFEL linac.

Our integrator utilizes two types of variables: external

variables with familiar and well-understood physical sense,

and internal variables which are suitable for the applica-

tion of the symplectic numerical methods. The symplectic

numerical methods, which we use, are based on the split-

ting method (probably, the most frequently used symplectic

integrator), which we combine with the techniques of the

multiple time scales and of the partial averaging.

LINEAR OSCILLATIONS IN
AXISYMMETRIC TM FIELD

As is well known, the linear dynamics in a transverse

magnetic (TM) field, which is rotationally invariant with

respect to the longitudinal z-direction, is fully determined
by the knowledge of the electric field distribution E0(t, z)
along the symmetry axis. The complete set of equations of

motion includes nonlinear equations describing dynamics

of the reference particle and linear equations of the small

oscillations around the ideal reference orbit.
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For the accelerating reference particle moving along the

z-axis we use, as often, the equations
dt0
dz
=

1

β0c
,

dγ0
dz
= Ê0(t0, z) def

=
e E0(t0, z)

m0 c2
, (1)

where γ0, β0 and t0 are the Lorentz factor of the reference
particle, its velocity in terms of the speed of light c and its

arrival time at a certain position z, respectively.
As concerning transverse dynamics, we consider only

the horizontal motion, because due to rotational invariance

equations for the both transverse planes are identical.
dx
dz
= qx, (2a)

dqx
dz
= − 1

γ0 β
2
0

[
1

2

(
∂Ê0
∂z
+
β0
c
∂Ê0
∂t

)
x + Ê0 qx

]
. (2b)

Here x measures the horizontal displacement from the sym-

metry axis and qx is the horizontal kinetic momentum scaled

with the kinetic momentum of the reference particle.

The variables σ and ε which we use for the description
of the longitudinal oscillations are

σ = c β0 (t0 − t), ε = (γ − γ0) / (β20 γ0), (3)

and the corresponding equations of motion are as follows

dσ
dz
=

1

γ2
0

�� Ê0
γ0 β

2
0

σ + ε�� , (4a)

dε
dz
= − 1

γ0 β
2
0

⎡⎢⎢⎢⎢⎣ 1

β0c
∂Ê0
∂t
σ + ��1 + 1

γ2
0

�� Ê0 ε
⎤⎥⎥⎥⎥⎦ . (4b)

TRANSFORMATION TO HAMILTONIAN
EQUATIONS

In this section we transform equations (2) and (4) to the

Hamiltonian form, which enables the possibility to use sym-

plectic methods for their numerical integration. It is clear

that such transformations are not unique, and for the equa-

tions (2) we use the linear coordinate substitution [6][
x

qx

]
= 1√

γ0β0

⎡⎢⎢⎢⎢⎣
1 0

− Ê0
2γ0β

2
0

1

⎤⎥⎥⎥⎥⎦
[

x̃
q̃x

]
, (5)

which brings them to the Hill’s type form

dx̃ / dz = q̃x, dq̃x / dz = −ΩX (z) x̃ (6)

with the Hamiltonian function

H2X = H1
2X + H2

2X, (7a)

H1
2X = q̃2x / 2, H2

2X = ΩX x̃2 / 2, (7b)

where

ΩX = ��1 + 2

γ2
0

�� �� Ê0
2γ0 β

2
0

��
2

− 1

2γ3
0
β3
0
c
∂Ê0
∂t
. (8)
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Equations (4) can also be brought to a form similar to the

Hill’s type form by using the transformation[
σ
ε

]
= 1√

γ0β0

⎡⎢⎢⎢⎢⎣
1 0

− Ê0 (γ2
0
+2)

2γ0β
2
0

1

⎤⎥⎥⎥⎥⎦
[
σ̃
ε̃

]
, (9)

which turn them into the Hamiltonian equations

dσ̃ / dz = ε̃ / γ20, dε̃ / dz = −ΩL (z) σ̃ (10)

with

ΩL = −3 ��1 − 2

γ2
0

�� �� Ê0
2β2

0

��
2

− γ0

2β3
0
c
∂Ê0
∂t

− ��1 + 2

γ2
0

�� · γ02β20 ∂Ê0
∂z
. (11)

Unfortunately, though good looking, equations (10) are not

well suited for the numerical integration, because ΩL grows

together with the energy increase (stiffness problem) and

because ΩL contains partial derivative of the on-axis field

with respect to the spatial variable z, which, in general, can
be computed only numerically, i.e. with additional errors.

So we take [
σ
ε

]
= 1√

γ0β0

[
σ̃
ε̃

]
(12)

and obtain the system

dσ̃ / dz = ∂H2L / ∂ε̃, dε̃ / dz = −∂H2L / ∂σ̃ (13)

with the Hamiltonian function

H2L = H1
2L + H2

2L + H3
2L, (14a)

H1
2L =

��1 + 2

γ2
0

�� 1

2γ0 β
2
0

dγ0
dz
σ̃ε̃, (14b)

H2
2L =

1

γ2
0

ε̃2

2
, H3

2L =
1

β3
0
γ0c
∂Ê0
∂t
σ̃2

2
. (14c)

STANDING WAVE CAVITY AND NEW
REFERENCE PARTICLE VARIABLES
In this paper we are interested in the situation when the

scaled on-axis electric field Ê0 has the standing wave form
Ê0(t, z) = Ã a(z) cos(ω t + ϕ0). (15)

We assume that the amplitude function a(z) is defined on
the interval [0, l] and is normalized in such a way that

a2c (l) + a2s (l) = 1, (16)

where

ac (z) + i as (z) =
∫ z

0

a(τ) exp
(
i
ω

c
τ
)

dτ. (17)

As an example, Fig.1 shows the amplitude function a(z) of
the European XFEL TESLA-type 1.3 GHz cavity.

Let us define angle θ by the relations
cos(θ) = ac (l), sin(θ) = −as (l), (18)

and let us introduce phase

ψ0(z) = ω · [t0(z) − z / c] + (ϕ0 − θ) (19)

as a new variable instead of the reference time t0. In the
variables ψ0 and γ0 equations (1) take on the form

dψ0 / dz = ∂HR / ∂γ0, dγ0 / dz = −∂HR / ∂ψ0, (20)
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Figure 1: Properly normalized amplitude function a(z) of
the European XFEL TESLA-type 1.3 GHz cavity.
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Figure 2: Pre-tabulated functions Fc
n,m and Fs

n,m calculated

for the European XFEL TESLA-type 1.3 GHz cavity.

where

HR = H1
R + H2

R, (21a)

H1
R =

ω

c

(√
γ2
0
− 1 − γ0

)
, (21b)

H2
R = −Ã a(z) sin

(
ω

c
z + θ + ψ0

)
. (21c)

To clarify the meaning of our normalization of a(z) and
the meaning of the new variable ψ0, let us assume that the
reference energy is so high that ψ0(z) ≈ ψ0(0). Then

γ0(l) − γ0(0) ≈ Ã cos(ψ0(0)). (22)

It means that within assumed approximation Ã is the gain in

the γ-factor for the on-crest cavity passage and ψ0(0) = 0
corresponds to the cavity on-crest setup.

SYMPLECTIC INTEGRATION SCHEME
Equations (6), (13) and (20) are Hamiltonian, and we in-

tegrate them using symplectic methods constructed on the

basis of the well known observation that if an autonomous

Hamiltonian H can be decomposed into a sum of n inte-

grable pieces H = H1 + . . . + Hn with φm(h) being the
corresponding phase flows from z to z + h, then the map
φ1(h/2) · · · φn−1(h/2) φn(h) φn−1(h/2) · · · φ1(h/2) (23)

is symmetric second-order symplectic integrator.

Because the composition rule (23) is formally applicable

only to the autonomous systems, we first autonomize our

Hamiltonians by the standard phase space extension trick.

We use one pair of additional conjugated variables (vz,wz )
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for the autonomization of the Hamiltonian (21) and two

pairs, (vz,wz ) and (vr,wr ), for the autonomization of the
Hamiltonians (7) and (14), because in the latter case the

independent variable z enters the Hamiltonians (7) and (14)
in two different ways, directly and through the parameters of

the reference particle γ0 and ψ0, and we would like to reflect
and use this difference in our numerical integration scheme.

Numerical Dynamics of the Reference Particle
For the Hamiltonian (21) we use the splitting

H1 = H1
R, H2 = H2

R + wz, (24)

and obtain the following scheme to advance the variables

ψ0 and γ0 from z to z + h:

ψ0(z + h/2) = ψ0(z) +
h
2
· ω

c
· 1 − β0(z)
β0(z)

, (25a)

γ0(z + h) = γ0(z)

+ Ã
{
cos

[
ψ0(z + h/2)

] [
Fc
1,1(z + h) − Fc

1,1(z)
]

− sin [
ψ0(z + h/2)

] [
Fs
1,1(z + h) − Fs

1,1(z)
] }
, (25b)

ψ0(z + h) = ψ0(z + h/2) +
h
2
· ω

c
· 1 − β0(z + h)
β0(z + h)

, (25c)

where

Fc
n,m(z) =

∫ z

0

an(τ) cos
[
m

(
ω

c
τ + θ

)]
dτ, (26)

Fs
n,m(z) =

∫ z

0

an(τ) sin
[
m

(
ω

c
τ + θ

)]
dτ. (27)

The integrals in (25b) can be approximated by using some

quadrature rule of order two or higher (for example, the

midpoint rule or the Simpson’s rule), but, for the better

precision, we prefer to pre-tabulate functions (26) and (27)

with highest possible accuracy and then use them as an input

for our numerical integrator (see Fig.2).

Numerical Calculation of the Focusing Matrices
For the horizontal and longitudinal oscillations we use

the splitting

H1 = H1
2X + wr, H2 = H2

2X + wz (28)

for the Hamiltonian (7) and the spitting

H1 = H1
2L + wr, H2 = H2

2L, H3 = H3
2L + wz (29)

for the Hamiltonian (14), and obtain the propagation rule[
x̃(z + h), q̃x (z + h)

]�
= X (z, h) · [ x̃(z), q̃x (z)

]� , (30a)
[σ̃(z + h), ε̃(z + h)]� = Σ(z, h) · [σ̃(z), ε̃(z)]� , (30b)

where X and Σ are the 2 × 2 matrices with the elements
x11(z, h) = x22(z, h) = 1 + h u(z, h) / 2, (31a)

x12(z, h) = (h / 2) [2 + h u(z, h) / 2] , (31b)

x21(z, h) = u(z, h), (31c)

σ11(z, h) = κ(z + h, z) d(z, h), (32a)

σ22(z, h) = κ(z, z + h) d(z, h), (32b)

σ12(z, h) = κ(z, z + h/2) κ(z + h, z + h/2)

· h [1 + d(z, h)] /
[
2γ20 (z + h/2)

]
, (32c)

σ21(z, h) = κ(z + h/2, z)κ(z + h/2, z + h)κ(z, h), (32d)

and abbreviations in (31) and (32) are as follows:

u(z, h) = − κ(z, h)
2γ2

0
(z + h/2)

− 1
2

⎡⎢⎢⎢⎢⎣1 + 2

γ2
0
(z + h/2)

⎤⎥⎥⎥⎥⎦
·
[

B(z, h)
2

]2 { [
Fc
2,0(z + h) − Fc

2,0(z)
]

+ cos
[
2ψ0(z + h/2)

] [
Fc
2,2(z + h) − Fc

2,2(z)
]

− sin [
2ψ0(z + h/2)

] [
Fs
2,2(z + h) − Fs

2,2(z)
] }
, (33)

κ(z, h) =
B(z, h)
β0(z + h/2)

·ω
c

{
cos

[
ψ0(z + h/2)

] [
Fs
1,1(z + h) − Fs

1,1(z)
]

+ sin
[
ψ0(z + h/2)

] [
Fc
1,1(z + h) − Fc

1,1(z)
] }
, (34)

B(z, h) =
Ã

β2
0
(z + h/2) γ0(z + h/2)

, (35)

κ(z1, z2) =
β3/2
0

(z1) γ1/2
0

(z1)

β3/2
0

(z2) γ1/2
0

(z2)
, (36)

d(z, h) = 1 +
hκ(z, h)

2γ2
0
(z + h/2)

. (37)

INTEGRATOR SUMMARY
Our integrator utilizes two types of variables: external and

internal. External variables are used only as input-output

variables and are the variables of the original equations (1),

(2) and (4). Internal variables are the variables in which

we do actual numerical integration, and transition between

external and internal variables is made, whenever it required,

according to the formulas (5), (12) and (19).

We haven’t found any advantages in using the variable

step-size integration and simply calculate the n-step approx-
imation to the focusing matrices transporting beam parame-

ters between the points z1 and z2 as the products
TX [z2] X[z1 + (n − 1) Δ, Δ] · · · X[z1, Δ]T−1X [z1], (38)

TL[z2] Σ[z1 + (n − 1) Δ, Δ] · · · Σ[z1, Δ]T−1L [z1], (39)

where Δ = (z2 − z1) / n, and TX and TL are the matrices in

the right hand sides of equations (5) and (12), respectively.

Because evaluation of the one-step matrices X and Σ re-

quires knowledge of ψ0 and γ0 in three points z, z+Δ / 2 and
z+Δ, for each step of the length h = Δ in matrix calculations
we do two steps of the length h = Δ / 2 for the reference
particle according to the formulas (25).
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