First observation of the LHC beam halo using a Synchrotron Coronagraph

G.TRAD, T. Mitsuhashi*, E. Bravin, A.

Goldblatt, F. Roncarolo
CERN, *KEK

Agenda

1. Halo formation in HL-LHC
2. Working principle of the coronagraph
3. Coronagraph at LHC
4. Artificail beam halo formation with beam exciter
5. Observation of beam halo at 450 GeV
6. Design of dedicated coronagraph for HL LHC

1. Understanding Beam Halo Formation in the HL LHC

Simulation of halo formation from long-range beam-beam interactions

Halo is expected
 between $2 \sigma\left(10^{-1}\right)$ to $5 \sigma\left(10^{-5}\right)$

Halo control essential to limit beam loss

- Best done by tuning the machine to avoid populating the tails in the first place
- For high energy or high power machines too much beam in the halo can lead to damage of accelerator components Due to instantaneous losses or long term irradiation

2. Coronagraph

WHAT? Spatial telescope used to observe the sun corona by creating an artificial eclipse.
\Rightarrow blocking the glare of the bright core image to allow the observation of a fade corona.

Already used for the observation of halo, tails of an electron beam core at the PF, KEK.

Sketch of the coronagraph optical system showing the three stages and the final zooming stage. the mask used to block the beam core image and the Lyot stop to block the diffraction fringes

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

Aperture

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

Gaussian profile Convolution between diffraction and object Diffraction fringes

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

Gaussian profile
Convolution
between diffraction
and object
Diffraction fringes

- The Field lens makes image of entrance aperture of the objective lens.

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

- The Field lens makes image of entrance aperture of the objective lens.

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

- The Field lens makes image of entrance aperture of the objective lens.

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.
=> The diffraction fringes of objective lens aperture are re-diffracted, and produce fringes surrounding of objective aperture image

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

- The Field lens makes image of entrance aperture of the objective lens.

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.
=> The diffraction fringes of objective lens aperture are re-diffracted, and produce fringes surrounding of objective aperture image

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

- The Field lens makes image of entrance aperture of the objective lens.

- The Field lens images entrance aperture of the $1^{\text {st }}$ stage.
- A Lyot Stop cuts the diffraction fringes in $1^{\text {st }}$ stage.
- Relay Lens transfer halo image onto its focal point.

A first image of the beam is created at the $1^{\text {st }}$ stage of the coronagraph by the objective lens.
The "Halo" information is hidden in this image plane by aperture diffraction.

3. LHC Coronagraph

Phase 1

- Mostly using optics inherited from KEK PF coronagraph
- Demonstrator for proton beams
- Max. achievable contrast: $10^{-3}-10^{-4}$
- Limited by $1^{\text {st }}$ stage magnification

Total Size needed is 5.2 m
Achieving 2.26 final Mag fitting on camera measurable halo +/-10 sigma (after the not wanted 5 sigma)

Tunnel Installation

- Installed
on B2
- Commissionin g in parallel to LHC operation
- Dedicated MD November 2016

Tunnel Installation

Test at injection Energy 450 GeV

4. Artificial halo formation

The ADT(transverse damper) is used as exciter for one of beam train.

12bunches 3 trains

Injection of 3
12 bunches trains
Average bunch Intensity:
$\sim 10^{11}$ protons/bunch
Average Normalized Emittance (H\&V):
$\sim 1.8 \mu \mathrm{~m}$

Injection of 3
12 bunches trains
Average bunch Intensity:
$\sim 10^{11}$ protons/bunch
Average Normalized Emittance (H\&V):
$\sim 1.8 \mu \mathrm{~m}$

Experiment A

Horizontal Blow Up of
Train 1 to 8 microns
Close H scraper down to 2.9 sigma (nominal)

Open back to 5.7 sig (nominal)

Injection of 3
12 bunches trains
Average bunch Intensity:
$\sim 10{ }^{11}$ protons/bunch
Average Normalized Emittance (H\&V):
$\sim 1.8 \mu \mathrm{~m}$

Experiment A

Horizontal Blow Up of
Train 1 to 8 microns
Close H scraper down to 2.9 sigma (nominal)

Open back to 5.7 sig (nominal)

Experiment B

Vertical Blow Up of Train 2 to 10 microns

Close V scraper down to 2.6 sigma (nominal)

Open back to 5.7 sig (nominal)

5. Halo observation

 at injection Energy 450 GeV
Coronagraph Configuration

 length

Experiment A

Experiment A

Experiment A

During transverse emittance blow-up (H)
$1^{\text {st }}$ Train Blow Up $6 \mu \mathrm{~m}$
$1^{\text {st }}$ Train Blow Up $8 \mu \mathrm{~m}$

Light Variation against to initial conditions (i.e. small bunches before the blow up)

Experiment A

During transverse emittance blow-up (H)

$1^{\text {st }}$ Train Blow Up $7 \mu \mathrm{~m}$

$1^{\text {st }}$ Train Blow Up $8 \mu \mathrm{~m}$

Light Variation against to initial conditions (i.e. small bunches before the blow up)

Experiment A

During transverse emittance blow-up (H)

$1^{\text {st }}$ Train Blow Up $8 \mu \mathrm{~m}$

Light Variation against to initial conditions (i.e. small bunches before the blow up)

Experiment A

During transverse emittance blow-up (H)

Light Variation against to initial conditions (i.e. small bunches before the blow up)

Experiment A

During transverse emittance scraping (H)

H Collimator to 2.9 Nominal Sigma

H Collimator to 3.3 Nominal Sigma

Reference image is before scraping
start
Light Variation against to initial conditions (i.e. intense bunches before the scraping)

Experiment A

During transverse emittance scraping (H)

H Collimator to 2.9 Nominal Sigma

Reference image is before scraping
start
Light Variation against to initial conditions (i.e. intense bunches before the scraping)

Experiment A

During transverse emittance scraping (H)

Reference image is before scraping start
Light Variation against to initial conditions (i.e. intense bunches before the scraping)

Experiment B

Experiment B

V Collimator to 4.1 Nominal Sigma

V Collimator to 3 Nominal Sigma

V Collimator to 3.6 Nominal Sigma

Light Variation agianst to initial conditions (i.e. intense bunches before the scraping)

V Collimator to 2.6 Nominal Sigma

Reference image is reset at each step of scraping

Correlation plot for the integrated intensity of halo and proton intensity

Experiment A

Integrated intensity of halo $\times 10^{6}$

Experiment B

Integrated intensity of halo $\times 10^{6}$

In Terms of Contrast

In Terms of Contrast

In Terms of Contrast

Contrast of 2.10^{-3} demonstrated

Phase 1 coronagraph has still large amount of diffraction fringe leakage!

Phase 1 coronagraph has still large amount of diffraction fringe leakage!

Phase 1 coronagraph has still large amount of diffraction fringe leakage!

Phase 1 coronagraph has still large amount of diffraction fringe leakage!

Phase 1 coronagraph has still large amount of diffraction fringe leakage!

Phase 1 coronagraph has still large amount of diffraction fringe leakage!

Conclusions for first observation of beam halo using an artificial halo

- Phase 1 Coronagraph was installed at B2 (SR monitor line).
- Test for Observation started with 450 GeV beam last summer using artificial halo which is formed by beam exciter
- Decrease of beam halo intensity with beam scraper is observed. 10^{-3} contrast is achieved.
- Phase 2 (dedicated coronagraph for HL LHC) design is started.

6. Phase 2 coronagraph

The performance of coronagraph is limited by which reason?

Back to diffraction fringe on Lyot stop

Back to diffraction fringe on Lyot stop

Back to diffraction fringe on Lyot stop

Key point to reduce leakage of diffraction fringe (increse contrast)

Apply a larger opaque mask! \downarrow
Make transverse magnification of first objective lens larger.

Coronagraph having a magnification of 0.5 (about 7 times larger transverse magnification)

Telephoto type with reflectors

Optical design

Entrance pupil for the first stage Objective mirror
system $\mathrm{f}=8000 \mathrm{~mm}$
Magnification ≈ 0.5

First mirror concave
$\mathrm{R}=4000 \mathrm{~mm}$

$R=-800 \mathrm{~mm}$

Magnification
$=1$

Lyot stop
$8 \mathrm{~mm} \times 8 \mathrm{~mm}$

Diffraction background at 3ed stage In Log scale 2×10^{-6} to $\mathbf{1 0}^{-7}$

Thank you for your attention!

