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Abstract
Stroboscopic averaging can be used to calculate the in-

variant spin field n for particles with a finite oscillation am-
plitude in phase space. The standard technique starts with
making a guess for n(r), which is a function of the phase
space position r. By tracking a particle’s orbital position
forward in time and then projecting the guessed n backwards
to the starting phase space point, the average of the backward
projected spins will converge to the invariant spin field direc-
tion linearly as 1/N where N is the number of turns tracked.
The convergence can be accelerated by an iterative method
that uses an approximate invariant spin field constructed by
averaging the calculated spin field over points that are close
in orbital phase space. This superconvergent algorithm has
been built into a new program based upon the Bmad toolkit
for charged particle and X-ray simulations.

INTRODUCTION
In a storage ring, the invariant spin field n(r, s), which

is a function of the 6-dimensional phase space position r
and the longitudinal position s, is the solution, with unit
normalization, to the Thomas-Bargmann-Michel-Telegdi (T-
BMT) equation such that [1]

R(r, s)n(r, s) = n(M r, s) , (1)

where M is the one-turn orbital map, and R is the one-turn
spin map. The concept of the invariant spin field, which
was first introduced byDerbenev and Kondratenko [2], is
important since it can be used to calculate the maximum
achievable time averaged polarization [3] as well as the spin
depolarization rate due to synchrotron radiation [4].

There are several methods that can be used to calcu-
late the invariant spin field. Adiabatic anti-damping [5],
the SODOM-2 algorithm [6], normal form analysis of the
spin/orbital transfer map [7] and stroboscopic averaging [3]
are the major methods. The method considered in this paper
is stroboscopic averaging. There are several similar vari-
ants for stroboscopic averaging [1]. The most efficient of
these variants starts with a particle at some given longitudi-
nal position s and some phase space position r = (J0,𝛷0)

where (J0,𝛷0) are the particle’s coordinates expressed using
action-angle variables. The particle is tracked N turns. The
invariant spin field at the starting position is then approxi-
mated by

n(𝛷0) '
nave

|nave |
, nave =

1
1 + N

N∑
i=0

R−1(𝛷0,𝛷i) ñ(𝛷i) ,

(2)
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where R(𝛷0,𝛷i) is the spin rotation matrix from orbital
phase 𝛷0 to 𝛷i , and ñ(𝛷n) is a guessed value for the
b f n(𝛷n) on the nth turn at orbital phase𝛷n. Here and below,
the dependence on J (which is a constant of the motion) and
s has been suppressed. The guessed value is typically taken
to be the value of the closed orbit invariant spin field direc-
tion n0. The average of the backward projected spins will
converge to the true n(𝛷0) as the number of turns tracked
increases to infinity. Once n(𝛷0) has been calculated, b f n
can be calculated at other points by forward propagation

n(𝛷i) = R(𝛷0,𝛷i)n(𝛷0) . (3)

The convergence of this algorithm is linear with1/N [1].
Neglected in this algorithm is the fact that, since n is a
continuous function, if 𝛷i is close to 𝛷j , then n(𝛷i)must be
close to n(𝛷j). By changing the algorithm to minimize the
scatter in n at points that are close to each other in orbital
space, an accelerated convergence can be achieved. This
is discussed below. The convergence speed is potentially
important, for example, in lattice design where many lattice
configurations may need to be considered.

SUPERCONVERGENT ALGORITHM
The new stroboscopic algorithm has two variants which

will be called the “self-consistent” variant and the “scatter-
minimization” variant. The common feature of the two
variants involves tracking a particle beginning at some given
phase space point over some number N of turns. After each
turn, the phase space position and the 1-turn spin transfer
matrix are stored. Since the spin transfer matrix only has a
few components, the amount of storage needed is negligible
even over many turns. With respect to computation time,
matrix multiplication of 1-turn spin matrices is very fast
compared to the time it takes to track a particle in a realistic
lattice. Therefore, the simulation time is essentially propor-
tional to N and is independent of the algorithm, old or new,
used to calculate n. With any algorithm, convergence to the
true value of n can be tested by calculating n periodically
as the particle is tracked and then stopping when changes in
the value of n fall below a given tolerance.

The new algorithm relies on the fact that, away from any
spin-orbit resonances (and it is assumed in this paper that
the system is not on a spin-orbit resonance), n(r) is a smooth
continuous function of r. This means that n at a given phase
space point can be approximated by an average of the values
for n computed at nearby points in orbital phase space.

Self-Consistent Algorithm Variant
The self-consistent algorithm is based on the fact that if

the guessed ñ(𝛷i) in Eq. (2) are in the same direction as the
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actual n(𝛷i), then the calculated n(𝛷0) will be exact. The
aim of the algorithm is to use a more accurate ñ(𝛷i) in place
of what is used in the standard algorithm.

With the self-consistent algorithm, initially, after N turns
of tracking, n(𝛷0) is calculated using the old “standard”
calculation. After this, the self-consistent algorithm uses the
following loop:

1. Compute n(𝛷i) for all i = 1, . . . , N by applying Eq. (3).

2. For all i = 0, . . . , N , average the n that are near n(𝛷i)

to produce a new guess ñ(𝛷i).

3. Use ñ(𝛷i) in Eq. (2) to calculate a new n(𝛷0).

4. If the new n(𝛷0) is within a user defined tolerance of
the old n(𝛷0), stop. If not, go back to step 1 and keep
looping until convergence is achieved.

There are various algorithms that could be used to calcu-
late the averaged ñ. The one chosen in the simulations below
involves averaging over the “directional nearest neighbors”.
There are six directional nearest neighbors, one for each of
the directions ±Φx , ±Φy and ±Φz . For example, the +Φy

nearest neighbor to the point 𝛷i is the nearest neighbor point
𝛷j such that dΦji,y ≡ Φj,y −Φi,y is positive or zero with
|dΦji,x | ≤ |dΦji,y | and |dΦji,z | ≤ |dΦji,y |. [Care must be
taken here to evaluate d𝛷ji components modulo factors of
2π.] The other directional nearest neighbors are calculated
similarly. The weighted average is then

ñ(𝛷i) =
∑
j∈γ(i)

n(𝛷j)

max(α, |d𝛷ji |)
, (4)

where γ(i) is the set of six indicies for the nearest neigh-
bor points and α is a tiny positive constant used to prevent
divide by zero problems. The max(α, |d𝛷ji |) denominator
is a weighting factor so that points that are close to 𝛷i are
weighted more.

Notice that the magnitude of ñ(𝛷i) is not normalized
to one so that points that have nearest neighbors that are
close by (that is small |d𝛷ji |) contribute more to the sum
in Eq. (2). Since the calculation of ñ(𝛷i) will be more
accurate when the nearest neighbor points are closer, the
convergence of the algorithm is helped by effectively using
a higher weight for such points. In fact, in the case where a
nearest neighbor point has𝛷j equal to𝛷i , the self-consistent
algorithm will converge to the exact solution in the limit that
α is vanishingly small.

Scatter-Minimization Algorithm Variant
The scatter-minimization algorithm is based upon the fact

that in some sense the difference (“scatter”) between n(𝛷i)

and the averaged value of the nearest neighbor points should
be small since n is a continuous function. Thus the scatter-
minimization algorithm involves varying the direction of
n(𝛷0) to minimize a merit function M that is a measure of

the scatter:

M =
N∑
i=0


∑
j∈γ(i)

n(𝛷j) − n(𝛷i)

max(α, |d𝛷ji |)


2

. (5)

Like the self-consistent variant, terms in the merit function
are weighted in favor of points where the nearest neighbor
points are closest and, like the self-consistent variant, the
scatter minimization variant will converge to the exact so-
lution, in the limit that α is vanishingly small, if two track
points coincide in orbital space.

SIMULATIONS
The self-consistent and scatter-minimization algorithms,

along with the standard stroboscopic averaging technique
have been built into a new simulation program called
“Spin_Stroboscope”. This program uses the Bmad toolkit
for charged particle and X-ray simulations [8] as a basis for
tracking.

To benchmark the algorithms, simulations were done
using a model which is an extension of the standard one-
resonance model [1]:

ds
dθ
= 𝛺(𝛷) × s ,

d𝛷
dθ
= (Qx,Qy,Qz) (6)

𝛺 =
©«
εx cos(Φx) + εy cos(Φy) + εz cos(Φz)

εx sin(Φx) + εy sin(Φy) + εz sin(Φz)

ν0

ª®¬ ,
where εx , εy and εz are resonance strengths for the three
modes,Φx ,Φy , andΦz are the mode phases, ν0 is the closed
orbit spin tune, and θ is the longitudinal coordinate of the
ring with a change in θ of 2π for one revolution of the beam.
The orbital transport was linear with a constant phase ad-
vance (Qx,Qy,Qz) per turn.
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Figure 1: Simulation accuracy verses number of turns using
a one-resonance model for the spin transport. Red: Stan-
dard stroboscopic averaging. Green: scatter-minimization
calculation. Blue: self-consistent variant. The upper dashed
line illustrates the slope for a 1/N convergence rate while
the lower dashed line illustrates a 1/N3 convergence rate.
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Figure 2: Simulation accuracy verses number of turns us-
ing a three-resonance model for the spin transport and non-
comensurate orbital tunes. Red: Standard stroboscopic av-
eraging. Green: scatter-minimization calculation. Blue:
self-consistent variant. The two dashed lines show conver-
gence rates of 1/N and 1/N1.5.

The first simulation used a single excited mode to mimic
a single resonance situation. The results are shown in Fig. 1
which shows the simulation accuracy, that is, the difference
between the calculated and actual n(𝛷0), as a function of the
number of turns tracked for all three algorithms. Simulation
parameters where Qx = (

√
5− 1)/2, ν0 = 0.55 and εx = 0.2

with all other parameters set to zero. Qx was chosen to be
the fractional part of the golden ratio to be a “worst case”
scenario for the two new algorithms since the golden ratio is
the most irrational number possible and thus this case avoids
having points in orbital phase space overlapping or being
very close (that is, being much less than 1/N).

Fig. 1 shows that the standard algorithm converges as
1/N as expected. The new algorithms converge much faster
as 1/N3 with the scatter-minimization being a little bit bet-
ter than the self-consistent calculation. An estimate of the
convergence for the self-consistent calculation is as follows:
The characteristic distance between nearest neighbor points
|d𝛷ji | is 1/N . Since Qx is very irrational, it is expected that
the denominators in Eq. (4) are similar and will be ignored.
The difference between n(𝛷j) in the numerator in Eq. (4)
and n(𝛷i) will scale as |d𝛷ji |. That is, will scale as 1/N .
Since the sum in Eq. (4) is over nearest neighbor points (2 in
this case) which are on opposite sides of 𝛷i , it is expected
that the first order difference will cancel out leaving a second
order difference which scales as |d𝛷ji |

2 or 1/N2. This error,
when summed in Eq. (2), will be reduced by a factor of 1/N
(just like in the standard algorithm). So the final error is
1/N3.

Results, with three modes excited, and using incommen-
surate tunes, is shown in Fig. 2. Values for the model param-
eters are also shown in the figure. Here the convergence of
the standard algorithm is still 1/N as expected, and the con-
vergence of the two variants is about 1/N1.5 at least above
N = 50 or so. Extending the estimate calculation used in the
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Figure 3: Simulation Accuracy verses number of turns using
a three-resonance model for the spin transport and com-
mensurate orbital tunes. Red: Standard stroboscopic av-
eraging. Green: scatter-minimization calculation. Blue:
self-consistent variant.

one-resonance model case to three dimensions gives a char-
acteristic distance between nearest neighbor points |d𝛷ji |

which scales as 1/N1/3. This gives an error in the calculated
ñ(𝛷i) in Eq. (4) that scales as 1/N2/3 so that the error in
calculating ñ(𝛷0) which is a factor of 1/N less is 1/N5/3 or
1/N1.67. Considering the crudeness of the estimate calcula-
tion, the simulated and estimated convergence rates should
be considered to be in reasonable agreement with each other.

If the orbital tunes are made commensurate, both variants
of the new algorithm will essentially converge on the exact
result within a set number of turns. This is shown in Fig. 3
where the orbital tunes are commensurate every 100 turns.
The reason why the error does not go to zero in this case
is due to the finite value of α in Eqs. (4) and (5) which
was set to 10−10 in this case. Of course since the tunes are
commensurate this implies an orbital resonance. However,
since the resonance is of order 100, in most situations, this
will not be a problem.

CONCLUSION
A new stroboscopic averaging algorithm for the calcula-

tion of the invariant spin field has been presented. There are
two variants of this algorithm with both variants showing
similar convergence characteristics and both variants show-
ing better convergence compared to the standard algorithm.
In fact, if the orbital tunes can be made commensurate with
each other, the new algorithm will essentially converge to
the exact result in a set number of turns tracked.

Shorter computation times not only make existing simu-
lations more efficient, but open the door for simulations that
would not be practical before.
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