SIMULATION STUDY OF AN RF INJECTOR FOR THE LWFA **CONFIGURATION AT EuPRAXIA**

J. Zhu^{*}, R.W. Assmann, B. Marchetti, A. F. Pousa¹, P.A. Walker, Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany ¹ also at Universität Hamburg, 22761 Hamburg, Germany

Abstract

The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) aims at producing a design report of a highly compact and costeffective European facility with multi-GeV electron beams using a plasma accelerator. LWFA (laser wake field acceleration) with external injection from an RF accelerator is one of the most promising configurations. In order to achieve the goal parameters for the 5 GeV, 30 pC electron beam at the entrance of the undulator, a high-quality electron beam with bunch length of less than 10 fs (FWHM) and beta functions of a few mm at the injection point is required. In addition, from the compactness point of view, the injection energy is desired to be as low as possible. A hybrid compression scheme is considered in this paper and detailed start-to-end simulation result is presented.

INTRODUCTION

The Horizon2020 Design Study EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) [1] will in October 2019 propose a first European Research Infrastructure that is dedicated to demonstrate exploitation of plasma accelerators for users. At the first stage, EuPRAXIA is aiming to achieve soft X-ray free-electron lasers using the SASE mode. In the EuPRAXIA study, both laser driven and beam driven approaches as well as combined plasma acceleration schemes - using beams produced by LWFA as drivers of PWFA (plasma wake field acceleration) stages - are taken into consideration.

EuPRAXIA is a site-independent design study. At DESY, we are considering to host EuPRAXIA within the infrastructure of the SINBAD facility [2]. As one of the two experiments at the SINBAD facility, the design of the ARES linac [3,4] was optimized to provide ~100 MeV, 0.5 - 30 pC, sub-fs to dozens of fs electron bunches suitable for testing various novel acceleration concepts, e.g. LWFA, DLA (dielectric laser acceleration). During the design phase of the ARES linac, the future energy upgration has already been taken into account. Therefore, it is natural to extend the current ARES linac to meet the specification of the LWFA configuration at EuPRAXIA. In this paper, we present the proposed layout and the beam dynamics simulation from the photocathode to the injection point (plasma entrance). In addition, some practical concerns such as various jitter are also discussed.

LAYOUT OF THE PROPOSED INJECTOR

title of the work, publisher, and DOI.

author(s),

the

5

maintain attri

must

work

this

of1

icence

the

ot

terms

the

under

be used

work may

from this

Content

The layout of the proposed RF injector for the LWFA configuration at EuPRAXIA is shown in Figure 1. There are two major differences between the proposed layout and the layout of the ARES linac: 1. three traveling-wave structures were inserted before the matching section; 2. the length of ibution each PMQ (permanent quadrupole magnet) was increased to 3 cm and their gradients were slightly increased to 300 T/m, 600 T/m and 600 T/m, respectively.

The electron bunch will be compressed using a two-stage hybrid compression scheme, i.e. the beam is compressed by means of velocity bunching and magnetic compression successively. The initial bunch charge is 50 pC at the photocathode and about 30 pC charge will be allowed to pass through the slit collimator located in the middle of the chicane with a full width of 0.6 mm. The hybrid-compression scheme was chosen mainly because of the following reasons:

- · Both a two-stage compression scheme and the slit collimator help to reduce the nonlinearity of the longitudinal phase-space;
- Any distribution • Compared to the pure magnetic compression scheme, 8. the hybrid-compression scheme has a much lower charge loss at the slit collimator. In addition, since 20] a much less amount of charge is required to be ex-0 tracted from the photocathde, the beam emittance will be smaller. Compared to the pure velocity bunching scheme, since there is a long distance between the linac 3.01 exit and the plasma in this layout, it is challenging to ВΥ transport velocity-bunched beams with the proposed 20 energy and peak currents of several kAs to the plasma without significantly spoiling the beam quality;
- It helps to reduce both the energy and peak current jitter after bunch compression compared to the other two compression schemes [5]. The energy jitter affects the longitudinal location of the focal point, while the peak current jitter affects the beam loading effect as well as the FEL output after the LWFA.

BEAM DYNAMICS SIMULATION

The goal of this study is to achieve a 30 pC electron bunch with a peak current higher than 3 kA and beta functions less than a few mm at the injection point. From the compactness point of view, the injection energy is desired to be as low as possible. However, the space-charge effects make it difficult to preserve the beam quality (e.g. emittance, peak current)

05 Beam Dynamics and EM Fields

^{*} jun.zhu@desy.de

Figure 1: Layout of the proposed RF injector for the LWFA configuration for EuPRAXIA.

maintain quadrupole magnets. To conclude, it is desired to find the most economical beam energy.

In the following simulations, the beam dynamics from must the photocathode to the linac exit was simulated by using ASTRA [7] with a two-dimensional cylindrical-symmetric work space-charge algorithm. Afterwards, it was simulated up ig to the injection point by using IMPACT-T [8] with a 3D space-charge algorithm and 1D CSR (Coherent Synchrotron of Radiation) model.

Minimum Beam Energy Required

distribution A fast estimation was carried out based on the working point 4 (WP4) for the ARES linac [4] to understand the dependency of the peak current on the beam energy. The 8). hybrid compression scheme was adopted for the WP4 at the 201 O ARES linac as well. In order to simulate electron bunches with different energies, the beam energy at the linac exit was scaled while the energy chirp was preserved. Moreover, the transverse coordinates (x, x', y and y') of the particles were reduced accordingly in order to preserve the normalized with different energies, the beam energy at the linac exit was \overleftarrow{a} emittances and Twiss parameters. In addition, the PMQ $\bigcup_{i=1}^{n}$ length was increased to 2 cm and the gradients were scaled 2 accordingly to make the optics almost identical for different beam energies. Finally, the width of the slit was increased to slice more charge out of the incoming bunch. The simulation result is shown in Figure 2

The simulation result is shown in Figure 2. It is found that the peak current reaches 3 kA when the beam energy $\frac{1}{2}$ increases to 200 MeV. As the beam energy increases, the increase of the horizontal emittance can be explained by the by stronger CSR effect due to the higher peak current, while the decrease of the vertical emittance is caused by the weakening é and the space-charge effects. Finally, the value of 250 MeV Ë was chosen in consideration of both the design margin and work the weakening of the space-charge effects.

from this The Proposed Working Point

According to the previous discussion, a feasible solution of upgrading the ARES linac to meet the specification of EuPRAXIA is to add three more 4.2-m-long traveling-wave

Content **THPAF032** 3026

Figure 2: Peak current and transverse emittances as a function of the beam energy.

structures. In the follwing start-to-end simulation, the photocathode laser pulse was assumed to have a Gaussian longitudinal shape with an rms duration of 290 fs, and a uniform transverse laser intensity distribution was taken at the photocathode. The maximum gradient of the 1.5-cell S-band RF gun was assumed to be 110 MV/m. By operating the five structures with the same gradient of 25.5 MV/m and different off-crest phases (-87.0, -55.0, -41.0, -41.0 and -41.0 degrees), the final beam energy is about 240 MeV. The R_{56} of the chicane is about -9 mm. The evolutions of the transverse beam sizes and emittances from the photocathode to the linac exit are shown in Figure 3. The beam optics from the linac exit to the injection point is shown in Figure 4. The beam parameters at the linac exit and the injection point are summarized in Table 1, and the transverse and longitudinal phase-spaces are shown in Figure 5. The FWHM bunch length at the injection point is only 5 fs. However, there is merely one 0.75-µm-long slice with peak current higher than 3 kA. The influence of the space-charge effects after bunch compression is found to be significant. From the chicane exit to the injection point, the rms energy spread of the bunch increases from 0.18% to 0.27% and the vertical slice emittance increases from 0.27 µm to 0.34 µm. It is interesting to find out that the horizontal slice emittance decreases slightly in this region. The decrease of the horizontal slice emittance could be caused by the cancellation of the

05 Beam Dynamics and EM Fields

9th International Particle Accelerator Conference ISBN: 978-3-95450-184-7 IPAC2018, Vancouver, BC, Canada JACoW Publishing doi:10.18429/JACoW-IPAC2018-THPAF032

correlations built by the strong CSR effect in the chicane. It should be noted that the chromatic aberration at the PMQ triplet also contributes considerably to the vertical emittance growth [6].

 Table 1: Beam Parameters at the Linac Exit and the Injection

 Point

	Linac exit	Injection point
Energy (MeV)	242.0	240.8
Bunch charge (pC)	50.0	29.8
Rms bunch length (fs)	160.0	7.5
Peak current (kA)	0.13	4.0
Projected $\varepsilon_x / \varepsilon_y$ (µm)	0.30/0.30	0.81 / 0.46
Slice $\varepsilon_x / \varepsilon_y$ (µm)	0.28 / 0.28	0.59 / 0.34
$\beta_x / \beta_y \text{ (mm)}$	١	3.1/3.0
Rms energy spread (%)	0.50	0.27
Slice rms energy spread (%)	0.05	0.23

Figure 3: Transverse beam sizes and emittances evolutions from the photocathode to the linac exit.

More Discussions

For an LWFA-driven FEL, there are many other concerns besides the beam dynamics upstream of the plasma [9].

In this proposed working point, the beam is asymmetric (e.g. significantly different emittances and alpha functions in both planes) at the injection point mainly due to the CSR and space-charge effects. The influence of asymmetry on the further acceleration inside a plasma needs to be investigated. In terms of beam symmetry in the transverse plane, the

05 Beam Dynamics and EM Fields

D08 High Intensity in Linear Accelerators - Space Charge, Halos

Figure 4: Beam optics from the linac exit to the injection point.

pure velocity bunching scheme has an advantange over the compression scheme which involves a bunch compressor [10].

Due to the tiny size of a plasma channel (bubble), the performance of a plasma accelerator will be limited by various jitter in time and space [5]. A mismatch of the transverse position between the external beam and the drive laser, thus the plasma channel, will introduce a rapid projected emittance growth [11]

$$\frac{\Delta\varepsilon}{\varepsilon_0} \propto \left(\frac{\Delta x}{\sigma_{x_0}}\right)^2 \tag{1}$$

due to the large focusing strength. Therefore, the ratio between the beam centroid displacement and the beam size is important. Simulations have shown that this kind of emittance growth can be mitigated by employing a tailored plasma profile [12]. A mismatch of the divergence between the external beam and the drive laser can also result in a transverse position mismatch, which sets an limit on the length of the plasma channel. The pointing jitter of the beam at the focal point after a focusing thin lens is given by

$$\sigma_{\langle x'\rangle} \approx \sigma_{\langle x_0\rangle}/f,\tag{2}$$

assuming the initial position and pointing jitter are uncorrelated and the latter is small. For the proposed working point, the focal length of the PMQ triplet is about 10 cm or less, a 10 μ m position jitter upstream of the PMQ will introduce about 100 μ rad pointing jitter at the focal point. Simulations for the ARES linac have shown that a laser position jitter of 10 μ m at the photocathode can result in a divergence jitter of hundreds of μ rad at the injection point [9].

CONCLUSION

In this paper, we have proposed an RF injector for the LWFA configuration at EuPRAXIA by upgrading the ARES linac at DESY. The start-to-end simulation has shown that a 240-MeV, 30-pC beam can be achieved at the injection point with a FWHM bunch length of 5 fs (peak current >3 kA) and beta functions of about 3 mm. We have also shown that the pointing jitter at the injection point could be a challenge

THPAF032

Figure 5: Transverse and longitudinal phase-spaces of the beam at the linac exit (upper row) and the injection point (lower work row).

which limits the performance of the LWFA with external injection.

ACKNOWLEDGEMENT

Any distribution of this This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

REFERENCES

- 1] P.A. Walker et al., "Horizon 2020 EuPRAXIA design study", J. Phys.: Conf. Ser., vol. 874, p. 012029, 2017.
- [2] U. Dorda et al., "Status and Objectives of the Dedicated Accelerator R&D Facility SINBAD at DESY", Nucl. Instrum. Methods Phys. Res., Sect. A, in press.
- https://doi.org/10.1016/j.nima.2018.01.036
- [3] B. Marchetti, et al., "Status Update of the SINBAD-ARES Linac Under Construction at DESY", in Proc. IPAC'17, Copenhgen, Denmark, May 2017, paper TUPAB040.
- be used under the terms of the CC BY 3.0 licence (\odot 2018). J. Zhu, et al., "Lattice design and start-to-end simulations for the ARES linac", Nucl. Instrum. Methods Phys. Res., Sect. A, in press. https://doi.org/10.1016/j.nima.2018.02. 045
- J. Zhu, "Design Study for Generating Sub-femtosecond to Femtosecond Electron Bunches for Advanced Accelerator De-Content from this work may velopment at SINBAD", PhD Thesis, 2017.

- [6] J. Zhu, et al., "Matching space-charge dominated electron bunches into the plasma accelerator at SINBAD", in Proc. IPAC'17, Copenhagen, Denmark, May 2017, paper TH-PVA007.
- [7] K. Floettmann, "ASTRA particle tracking code", http:// tesla.desy.de/~meykopff/
- [8] J. Qiang, S. Lidia, R. D. Ryne, and C. Limborg-Deprey, "Three-dimensional quasistatic model for high brightness beam dynamics simulation", Phys. Rev. ST Accel. Beams, vol. 9, p. 044204, 2015.
- [9] B. Marchetti, et al., "Operational and Design Aspects of Accelerators for External Injection in LWFA", Appl. Sci., in press.
- [10] M. Ferrario, et al., "EuPRAXIA@SPARC_LAB Design study towards a compact FEL facility at LNF", Nucl. Instrum. Methods Phys. Res., Sect. A, in press, 2018. https: //doi.org/10.1016/j.nima.2018.01.094
- [11] R. Assmann and K. Yokoya, "Transverse beam dynamics in plasma-based linacs", Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 410, pp. 544-548, 1998.
- [12] I. Dornmair, et al., "Emittance Conservation by Tailored Focusing Profiles in a Plasma Accelerator", Phys. Rev. ST Accel. Beams, vol. 18, p. 041302, 2015.