

Development of a Gas Stripper at RIKEN

R

RIKEN

H. Imao

Outline

1. Introduction

• Situation and requirements for advanced strippers

2. World's activities

- Acceleration scheme at HIAF, FAIR, FRIB, RAON and RIBF
- FRIB: liquid Li stripper
- FAIR: gas-jet stripper and plasma stripper

3. Strippers at RIBF

- He gas stripper
- Plasma windows
- Rot. GC stripper
- Concept of stripper ring

4. Summary and future prospects

Charge stripper for hadron accelerator

Charge stripper for hadron accelerator complex

(1) Charge exchange injection for proton accelerators

(2) Charge stripper to increase energy gain for heavy ion accelerators

Fixed carbon-foil strippers (thin foil, high temperature)

High-intensity proton accelerators: J-Parc(HBC, I. Sugai), SNS(NDC, R.W. Shaw)...

Relativistic heavy-ion colliders:

BNL-RHIC(AL-GC, P. Thieberger), CERN-LHC, JLab-MEIC...

Scope of today

Fixed solid strippers difficult to use in in-flight RI beam facilities

Application limit of fixed C foil

Huge dE/dx of heavy ions on C foils

Heat load: sublimation

Radiation damage : lattice modification

Application limit (rough estimation)

 ${\sim}10^{11}/{s}$ for ^{238}U at intermediate energies

Example…

Xe-MT (6/16-7/5 in 2012 at RIBF) variation of output intensities w/ time

Upcoming in-flight RI beam facilities share the same difficulties

In-flight RI beam facilities

Acceleration scheme for ²³⁸U

HIAF(Synchrotron, PLS)

 U^{34+} No stripper (phase1), afterglow ECR, (planning $U^{34+} \rightarrow U^{78+}$ in phase2)

FAIR(Synchrotron, PLS)

 $U^{4+} \rightarrow U^{28+} @ 1.4 \text{ MeV/u}$, lower charge state to reduce space charge effects

FRIB(SRF linac, DC), RAON(SRF linac, DC)

 $U^{33+}\&U^{34+} \rightarrow U^{76+}-U^{80+}$, multi-charge acceleration

<u>RIBF(Ring cyclotron, DC)</u>

 $U^{35+} \rightarrow U^{64+} \& U^{64+} \rightarrow U^{86+}$, two strippers, advantage of acceleration ability

- Long lifetime: heat load, radiation damage⇒fluid, moving solid
- High charge state: low-density media such as gas provides lower charge state (density effect) → low-Z gas
- High stripping efficiency: shell effect, multi-electron process
- Thickness uniformity and stability: momentum spread
- Safe handling: explosion, pyrophoricity

Parameters of s	strippers for	²³⁸ U at FAIR,	, FRIB and RIBF

	FAIR	FRIB	RIBF		
	(values at GSI)	(planning values)	(present va	alues)	
media	H2 pulsed gas	Liq. Li	He gas	Rot. Disk	
energy [MeV/u]	1.4	~20	10.8	50.8	
input charge	4	33 + 34	35	64	
output charge	28 or 29	76-80	64	86	
intensity [pps] 1.2E+12		5.0E+13	1.0E+13	2.0E+12	
thickness [mg/cm2]	0.03	0.5	0.7 >10	¹² /s 14	
energy loss [W]	10	700	180	270	
key technology	pulse operation	safe operation of Li	indowless accumulation uniform thicknes		
			strong ma		

2. World's activities: FAIR Gas stripper at UNILAC for FAIR

Courtesy of W. Barth (GSI)

2. World's activities: FAIR

Pulsed H2 gas-cell stripper

Courtesy of W. Barth (GSI)

Recent prominent work!

Duty cycle of injected beams : 100 $\mu\text{s}/1~\text{Hz}$

Pulsed gas stripper is effective to reduce gas load on 4-stage differential pumping system

Make thick low-Z gas target (<100 μ g/cm² for H2) with the lower gas consumption rate

Pulsed gas valves with the leading time of 250 μs

P.Scharrer et al., PRST-AB 20 043503 (2017)

2. World's activities: FAIR

Charge stripping efficiency

Very succeceful!!

Thickness of H2 in measurement \sim 30 μ g/cm²

Courtesy of W. Barth (GSI)

W.Barth et al., PRST-AB 20 050101 (2017)

Thickness [µg/cm²]

2. World's activities: FAIR

Courtesy of W. Barth (GSI)

Achieved output intensity

In FAIR, it is planned to use the pulsed H2 gas-cell stripper at 1.4 MeV/u. Beam qualities after the stripper should be measured and multi-turn injection to SIS18 should be verified.

W.Barth et al., PRST-AB 20 050101 (2017)

Plasma stripper for FAIR

Plasma stripper is free from the thermal issues basically due to the heavy ion beams High charge state: electron capture processes w/ free electrons are strongly suppressed

Frankfurt group working at GSI

- Pinch plasma (pulse)
- -High electron density up to 3.6x10¹⁶ /cm³ (measured by Hβ broadning)
- Test experiments with Au²⁶⁺ beams (3.6 MeV/u) at GSI
- •Charge state enhancement:

Hydrogenplasma (θ-pinch) : 27+-30+

H² gas: 26+-28+

Aiming the higher electron densities more than 10¹⁷ /cm³

M. Iberler, et al., Proceedings of IPAC2016 TUPMR056 Ge Xu et al., PRL 119, 204801 (2017)

2. World's activities: FRIB

FRIB(USA): a folded linac

- SC Linac E/A≧200 MeV/u, 400 kW on target
- Liquid Li stripper at an energy of \sim 20 MeV/u
- Beam power at the stripper \sim 40 kW
- Energy deposit of ~700 W on thin Liq. Li film target (~10 μ m)

2. World's activities: FRIB

Liquid Li stripper for FRIB

- Liquid lithium stripper for FRIB has developed in collaboration between MSU and ANL (*J.Nolen et al.*)
- A high pressure lithium jet impinging on a deflector produces a thin lithium film (~ 10 µm) moving at high speed (~ 50 m/s)
- The lithium is circulated with an electromagnetic pump
- Film break up or not by powerful beams? Film stability demonstrated with a proton beam depositing similar power densities as an uranium beam at FRIB conditions

Y.Momozaki et al., JRNC, 305, 843 (2015)

Proton beam (65 kV, 4.6 mA, 300 kW, σ = 0.7 mm in the best focused condition) impinging on the liquid lithium film.

Beam power: 43% of FRIB Power density: 250% of FRIB were proved

Courtesy of F. Marti (MSU)

2. World's activities: FRIB

Hazard mitigation

Complete lithium loop enclosed in a 2.5 cm steel vessel. Over one hundred temperature sensors included.

- Secondary vessel encloses the entire Li loop and provides a safety barrier. The vessel atmosphere is maintained as an argon environment during operation (i.e. when Li is not solid)
- Detection of abnormal situation (i.e. excessive pressure in vacuum chamber or in secondary vessel) triggers a shutdown of lithium pump and controlled shutdown of the system.
- System is ready to load lithium

started to load the lithium in the module

Courtesy of F. Marti (MSU)

Acceleration scheme of ²³⁸U at RIBF

64+

Recirculating He stripper

Primary technical challenge windowless accumulation of He

Charge exchange here

He gas; 7 kPa * 50 cm \Rightarrow 0.7 mg/cm²

• 5 -stage diff. pumping; 26 pumps
•8 order pres. reduction; 7 kPa⇒10⁻⁵ Pa
•Large beam aperture; >Φ12 mm
•He gas flow; 300 m³/day

Recirculation system

- Multi-stage MBP array (7 units, 12000 m³/h)
- Recycling rate < 99.6%

Fundamental data

Target thinning

Powerful beams may make a hole even in gas stripper Target thinning will determine the application limit of gas stripper

•flow3D (K. Ogata)

•SW flow simulation (H. Imao)

Compared with CFD calculations, the heating efficiency is about 50%

VUV light emissions are a possible explanation

Not so serious at the present intensities

high-intensity operation

Problems with increasing intensities (>10¹³/s)

1. Beam transmission

Small beam loss cause hardware trouble and radioactivites Beam quality becomes worse due to space charge

2. Dynamic vacuum in RRC

RRC have only cryopumps and low pumping power for He Accumulation of He due to the stripper

large apertures and high sealing performance for He at the same time

New concept of gas jet curtain

Block He flow and exchange gas species

N2 gas can be evacuated by cryopumps in RRC (120 m³/s)

Installation of gas-jet curtain

Performance

Performance of N₂ jet curtain excellent (patent pending)

Operation in 2017

Larger-aperture orifices

Tapered tubes were used

4D acceptance x 1.5

N2 gas jet system actually installed

Improvement of effective stripping efficiency

There is no pressure rise in RRC with N2 gas-jet curtain

Plasma window

•Firstly developed by Dr. Ady Hershcovitch (BNL)

Journal of Applied Physics, 78(9), 5283-5288 (1995)

Principle

•Arc plasma compensates high density on high pressure side
•Viscosity of high-temperature gas in the plasma is increased

PW at RIBF (since 2011)

H.Kuboki et al., JRNC, 299, 1029 (2014)

Plasma window at RIBF

- •Diameters of orifice up to $\Phi 6$ mm are tested so far
- •Conductance reduction factor at Φ 6mm is around 8
- •Trying larger aperture more than 1cm
- •Spectroscopy of arc plasma to know the temperature and the density

Courtesy of N.Ikoma (RIKEN)

Rotating disk for the 2nd stripper

• 2015-: KNEKA GC

Courtesy of H. Hasebe (RIKEN)

Graphite carbon of KANEKA

High Orientation Graphite Carbon Sheet (KANEKA CORPORATION) http://www.elecdiv.kaneka.co.jp/english/graphite/

A.Tatami et al., INTDS2016, O-3

Courtesy of H. Hasebe (RIKEN)

Properties of KANEKA GC

Properties

Silver ~400 W/mK Beryllium ~200 W/mK

		Unite	Test methods	Typical values	
		UIIIIS	Test memous	25µm	40µm
Thickness		μm	Micrometer	25	40
Thermal conductivity	In plane (XY axis)	W/mK	AC calorimeter method	1500	1500
	Thru plane (Z axis)	W/IIIX	Laser flash method	5	5
Thermal diffusivity		cm ² /s	AC calorimeter method	9.0	9.0
Density		g/cm ³	Kaneka method	2.0	2.0
Tensile strength		MPa	ASTM-D-882	40	40
Bending		Cycles	JIS-C5016, R=2mm,135°	>10000	>10000
Electrical conductivity		S/cm	JIS K 7194	13000	13000
Heat resistance		°C	TG-DTA	500	500
Water absorption		%	JIS K 7209	<0.1	<0.1

These data are not guaranteed values but the measurement values at our company.

+ thickness uniformity

Courtesy of H. Hasebe (RIKEN)

Lifetimes of 2nd strippers at RIBF

Performance of KANEKA GCS is remarkable!!

		Arizona graphite (fixed)	Be disk (rotation)	KANEKA GCS (rotation)
	Period	2007-2011	2012-2014	2015-
	Maximum beam intensity	2-3 eμA ~2x10 ¹¹ /s 40 W loss	12 eμA ~1x10 ¹² /s 165 W loss	20 eμA ~2x10 ¹² /s 270 W loss
	Lifetime	7.12×10 ¹⁵ (71+) 9 hour	1×10¹⁸ (64+) 20 days	2×10¹⁸ (64+) 2×Beam Time More than 40 days
Be disk Control of the termination of terminatio of termination of termination of termination of te				
	before		before	after
C	ouctile above 400℃ and <i>H.Hasebe et al., I</i>	d brittle below 400℃ <i>NTDS2016, O-15</i>	Courtesy of H. Hasebe (RIKEN	

Charge stripper ring

Design of stripper ring at 50 MeV/u

Longitudinal and transverse motions

Various non-traditional strippers for world's in-flight RI beam facilities are being developed

- H2 gas-cell stripper at GSI is almost ready for FAIR
- MSU finished principle verification of liq. Li stripper and developing actual machines matching to FRIB operation
- He gas stripper and rot. GC-disk stripper have been developed at RIBF and are working well
- Studies for further advanced strippers and techniques, plasma strippers, gas-jet curtain, plasma windows and stripper rings, are also undergoing and will become strong tools in near future

