A HARD X-RAY COMPACT COMPTON SOURCE AT CBETA

K. E. Deitrick^{*}, C. Franck, G. H. Hoffstaetter, V. O. Kostroun, K. W. Smolenski Cornell University (CLASSE), Ithaca, New York, USA

J. Crone, H. L. Owen, Cockcroft Institute & University of Manchester, Warrington, UK

B. D. Muratori, Cockcroft Institute & ASTeC, STFC Daresbury Laboratory, Warrington, UK

Abstract

Compton backscattering at energy recovery linacs (ERLs) promises high flux, high energy x-ray sources in the future, made possible by high quality, high repetition rate electron beams produced by ERLs. CBETA, the Cornell-BNL ERL Test Accelerator currently being built and commissioned at Cornell, is an SRF multi-turn ERL using Non-Scaling Fixed Field Alternating-gradient (NS-FFA) arcs. CBETA has high quality design parameters with an anticipated top energy of 150 MeV on the fourth pass. The expected parameters naintain of a Compton source at CBETA include a top x-ray energy of over 400 keV with a flux on the order of 10^{12} ph/s. In this paper, we present anticipated parameters and potential $\frac{1}{2}$ this paper, we present anticipated parameters and poter applications in science and engineering for this source.

INVERSE COMPTON SCATTERING

Compton scattering is the process of scattering a photon off an electron at rest; in the case of inverse Compton scatter-ing (ICS), the electron loses energy to the incident photons. In the Thomson regime, i.e., where the energy of the photons in the electron beam frame is much less than the rest mass off an electron at rest; in the case of inverse Compton scattering (ICS), the electron loses energy to the incident photons. $rac{2}{3}$ of the electron, electron recoil is negligible, and the energy of the scattered photon in the lab frame is given by

$$E_{\gamma}(\Phi, \theta) \approx E_{\text{laser}} \frac{1 - \beta \cos \Phi}{1 - \beta \cos \theta}$$
 (1)

where E_{laser} is the laser energy, β is the relativistic factor v_{z}/c , Φ is the angle between the electron and laser beams at the interaction point (IP), and θ is the angle of the scattered $\stackrel{\text{definition}}{\cong}$ photons with respect to the direction of the electron beam, all measured in the lab frame. For a head-on collision between $\stackrel{\text{\tiny e}}{\rightarrow}$ a forward moving electron beam and an incident laser beam $\overleftarrow{\sigma} (\Phi = \pi)$, the photons scattered in the forward direction have the highest energy, which is $\gamma^2(1 + \beta^2)E_{\text{laser}} \approx 4\gamma^2 E_{\text{laser}}$, where γ is the typical relativistic factor. This energy is the Where γ is the typical relativistic factor. This Compton edge of the radiation energy range. The total number of scattered photons, N_{γ} : $N_{\gamma} = \sigma_T \frac{N_e N_{\text{laser}}}{2\pi \left(\sigma_e^2 + \sigma_{\text{laser}}^2\right)}$

The total number of scattered photons, N_{γ} , is given by

$$V_{\gamma} = \sigma_T \frac{N_e N_{\text{laser}}}{2\pi \left(\sigma_e^2 + \sigma_{\text{laser}}^2\right)}$$
(2)

may where σ_T is the Thomson cross section σ_T is the number of electrons in the bunch, N_{laser} is the numwhere σ_T is the Thomson cross section of 6.65×10^{-29} m², $\stackrel{\text{\tiny (2)}}{=}$ ber of photons in the incident laser pulse, and σ_e and σ_{laser} from 1 are the rms sizes of the electron and laser beams, respectively, assuming both are round Gaussian distributions. In

kd324@cornell.edu

Content **TUPGW085**

1604

Table 1: Parameters for Electron Beam at Collision Point for	
Each Pass Energy	

Parameter	Quantity	Units
Energy	42, 78, 114, 150	MeV
Repetition rate	1.3	GHz
Bunch charge	32	pC
eta^*	1	cm
Normalized transverse		
rms emittances	0.3	mm-mrad
Bunch length (<i>rms</i>)	1.3	mm

the regime where the laser spot size is sufficiently larger than the electron beam spot size at the IP, the rms size of the scattered photons, σ_{γ} , is the same as the electron spot size. For high-frequency repetitive sources, the total flux is $\mathcal{F} = f N_{\gamma}$, where f is the repetition rate. In the Thomson backscatter limit, the number of scattered photons in a 0.1% bandwidth at the Compton edge is given by $N_{0.1\%} = 1.5 \times 10^{-3} N_{\gamma}$, leading to the flux in a 0.1% bandwidth given by $\mathcal{F}_{0.1\%} = f N_{0.1\%}$.

For a non-diffraction limited beam, the brilliance of the scattered photons in a 0.1% bandwidth is given by

$$\mathcal{B} \approx \frac{\gamma^2 \mathcal{F}_{0.1\%}}{4\pi^2 \epsilon_{x,\mathrm{rms}}^N \epsilon_{y,\mathrm{rms}}^N} \tag{3}$$

where $\epsilon_{x,\text{rms}}^N$ and $\epsilon_{y,\text{rms}}^N$ are the normalized transverse *rms* emittances of the electron beam at the IP. This assumes that the laser spot is larger than the electron beam. In this approximation, the angular spread and size of the scattered photons match the angular spread and size of the electron beam at the IP. Maximizing the x-ray flux is done by maximizing the number of electrons and photons at the collision and minimizing both spot sizes - assuming a fixed repetition rate. Maximizing the brilliance at a given electron beam energy is done by maximizing the flux into a 0.1% bandwidth and minimizing the normalized transverse emittances [1].

ICS AT CBETA

CBETA, the Cornell-BNL (Brookhaven National Lab) ERL Test Accelerator, is an SRF multi-turn ERL using Non-Scaling Fixed Field Alternating-gradient (NS-FFA) arcs, seen in Fig. 1 [2]. This machine is currently being built and commissioned at Cornell. The FFA arcs are made of permanent Halbach magnets and have an energy acceptance from 42 to 150 MeV. The electron beam is injected at 6 MeV, before accelerating up to 150 MeV in 4 passes; the intermediate energies of 42, 78, and 114 MeV occur after the

MC2: Photon Sources and Electron Accelerators

Table 2: Parameters for Scattering Laser at Collision Point

Parameter	Quantity	Units	
Wavelength	1	μm	
Average power	81	kW	
Repetition rate	1.3	GHz	
Spot size	25	μm	
Pulse duration (<i>rms</i>)	5.7	ps	

first, second, and third pass, respectively. CBETA has high quality design parameters throughout the acceleration of the beam, making it a potential option for a Compton light source.

Figure 1: Layout of CBETA.

Using the CBETA design parameters, we can approximate the electron beam parameters achievable for each pass in a bypass line parallel to the ZA/ZB straight section; these parameters are given in Table 1, with each of the four energy options given. In Table 2, we give parameters for a laser similar to one utilized in a recent Compton backscattering experiment [3]. Using the formula presented in the previous section, we can estimate the anticipated x-ray parameters using Tables 1 and 2; these parameters are given in Table 3. performed using x-rays 50-150 keV and higher. The advantages of this approach include access to high momentum transfers, high penetration of x-rays allowing experiments to be done in air and transmission geometry, reduced photoabsorption at higher energies (allowing samples with heavy work, elements), and reduced radiation damage in samples [4]. Another application of such a high energy, high flux source the is spectroscopy in high energy atomic physics.

DOI and

er.

ot

must maintain attribution to the author(s), title

distribution of this work

be used under the terms of the CC BY 3.0 licence (© 2019).

Content from this work may

A number of other x-ray techniques include phase contrast imaging, absorption radiography, K-edge subtraction imaging, radiotherapy, and computed tomography. These techniques are used in a large number of fields, including medicine, cultural heritage, material science development, national security, and industry.

CONCLUSION

As we move forward with this design effort, the target parameters may be changed to allow for a wider potential user community and more reliable operation. However, based on the initial parameters presented here, ICS at CBETA promises to be a remarkably flexible and capable hard x-ray source when fully developed.

ACKNOWLEDGEMENTS

This work was funded by the New York State Energy Research and Development Agency (NYSERDA), National Science Foundation (NSF) award DMR-0807731, U.S. Department of Energy (U.S. DOE) grant DE-AC02-76SF00515, and supported in part under UK Science and Technology Facilities Council Grant No. ST/G008248/1. This project has been supported in part by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.

Parameter	Quantity				Units
	1st Pass	2nd Pass	3rd Pass	4th Pass	
Energy	33.5	116	247	427	keV
σ_{γ}	6	4.4	3.7	3.2	μm
\mathcal{F}	1.3×10^{12}				ph/s
Average $\mathcal B$	3.7×10^{12}	1.3×10^{13}	2.8×10^{13}	4.9×10^{13}	$ph/(s-mm^2-mrad^2-0.1\%BW)$
Peak \mathcal{B}	3×10^{19}	2×10^{20}	4×10^{20}	8×10^{20}	ph/(s-mm ² -mrad ² -0.1%BW)

Table 3: Anticipated Parameters for x-ray Beam at Collision Point

APPLICATIONS

From the values in Table 3, it becomes clear that a Compton source at CBETA is capable of an extremely large energy range, with the upper limit exceeding that typically found at synchrotron sources. It achieves this with an average flux on the order of 10^{12} ph/s for all energies, an average brilliance on the order of $10^{12} - 10^{13}$ ph/(s-mm²-mrad²-0.1%BW), and a peak brilliance on the order of $10^{19} - 10^{20}$ ph/(s-mm² $mrad^{2}-0.1\%BW$).

One particular application which this energy range is well-suited for is high energy x-ray diffraction, typically

MC2: Photon Sources and Electron Accelerators

A23 Other Linac-Based Photon Sources

REFERENCES

- [1] K. E. Deitrick, G. A. Krafft, B. Terzić, and J. R. Delayen, Phys Rev. ST Accel. Beams 21, 080703 (2018)
- [2] G. Hoffstaetter et al., CBETA Design Report, Cornell BNL ERL Test Accelerator, arXiv:1706.04245[physics acc-ph]
- [3] T. Akagi et al., Phys. Rev. ST Accel. Beams 19, 114701 (2016)
- [4] C. J. Benmore, ISRN Materials Science, vol. 2012, Article ID 852905 (2012)