

The Girders System for the new ESRF storage ring 11/09/2016

European Synchrotron radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France

Cianciosi Filippo (Lin Zhang, Thierry Brochard, Philippe Marion, Loys Goirand, Yves Dabin, Marc Lesourd)

• ESRF storage ring = 32 cells each cell = 26.4m long

Present ESRF lattice

Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell

ESRF II lattice

Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell

• ESRF storage ring = 32 cells each cell = 26.4m long

Present ESRF lattice

Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell

ESRF II lattice

Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell

• ESRF storage ring = 32 cells each cell = 26.4m long

Present ESRF lattice

Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell

ESRF II lattice

Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell

• ESRF storage ring = 32 cells each cell = 26.4m long

Present ESRF lattice

Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell

ESRF II lattice

Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell

• ESRF storage ring = 32 cells each cell = $26.4m \log 1000$

Present ESRF lattice

Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell

ESRF II lattice

Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell

• ESRF storage ring = 32 cells each cell = $26.4m \log 1000$

Present ESRF lattice

Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell

ESRF II lattice

Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell

INPUT DATA

- Girder length = 5.1m, magnets weight = 6-7T
- Static positioning required

		HORIZONTAL (Y)	VERTICAL (Z)
	Girder to girder	50 µm	50 μm
	ESRF site and slabs large displacements - Static = 150 μm / 6 months - Vibration level = high compared to other sites		

INPUT DATA

- ➢ Girder length = 5.1m, magnets weight = 6-7T
- Static positioning required

	HORIZONTAL (Y)	VERTICAL (Z)
Girder to girder	50 µm	50 μm
ESRF site and slabs large displacements		

- Static = 150 μ m / 6 months
- Vibration level = high compared to other sites

factors)

TF_{Q2e}

TF_{G2M}

TF_{s2G}

TF_{ar2s}

Vibration amplification ground to beam

Brilliance reduction

Emittance growth

INPUT DATA

 \geq

- \succ Girder length = 5.1m, magnets weight = 6-7T
- \triangleright Static positioning required

Vibration amplification ground to beam

Brilliance reduction

Emittance growth

INPUT DATA

>

 \triangleright Static positioning required

- Budget limits

The European Synchrotron

ESRF

Vibration amplification ground to beam

Brilliance reduction

Emittance growth

INPUT DATA

Static positioning required

The European Synchrotron

ESRF

Vibration amplification ground to beam

Brilliance reduction

INPUT DATA

 \triangleright Static positioning required

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

THE ORTHOGONAL HEPTAPODE

There is 1 degree of hyperstaticity in the vertical direction, a carefully adj of the 4 feets is required.

Girder material: carbon steel - Typical tickness: 30mm (15-50mm) Piece junction: full penetration and continuos weldings Flatness of the upper face: +/-0.04mm (without payload)

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

Wedge Airloc 414-KSKC (modified for motorization)

Wedge Airloc 414-KSKC (modified for motorization)

100

Spherical seat integrated in the wedge

Sliding contact (Fibro commercial plate)

Screws for X

alignement

Wedge Airloc 414-KSKC (modified for motorization)

CALA

Spherical seat integrated in the wedge

Sliding contact (Fibro commercial plate)

Screws for X

alignement

Wedge Airloc 414-KSKC (modified for motorization)

Spherical seat integrated in the wedge

Sliding contact (Fibro commercial plate)

Spherical washers to put preload between the sliding surfaces

Wedge Airloc 414-KSKC (modified for motorization)

Spherical seat integrated in the wedge

Sliding contact (Fibro commercial plate)

Spherical washers to put preload between the sliding surfaces

Preload springs (2x0.7T) They don't press the sliding contact, no adjustement needed following the vertical movement.

The European Synchrotron

Screws for X alignement

Wedge Airloc 414-KSKC (modified for motorization)

Spherical seat integrated in the wedge

Sliding contact (Fibro commercial plate)

Spherical washers to put preload between the sliding surfaces

Preload springs (2x0.7T) They don't press the sliding contact, no adjustement needed following the vertical movement.

Z movement: Accuracy: 10.8µm Repeatability: 3.3µm Increment: 0.3µm

Screws for X

alignement

2016

3 functions:

-horizontal adjustment (+/- 3.5mm continuous, +/-15mm global)

-guiding the vertical movement (ensuring no lateral dipl. during the vertical adjustement) -improoving the stiffness of the girder

3 functions:

-horizontal adjustment (+/- 3.5mm continuous, +/-15mm global)

-guiding the vertical movement (ensuring no lateral dipl. during the vertical adjustement) -improoving the stiffness of the girder

ESRF

3 functions:

-horizontal adjustment (+/- 3.5mm continuous, +/-15mm global)

-guiding the vertical movement (ensuring no lateral dipl. during the vertical adjustement) -improoving the stiffness of the girder

ESRF

3 functions:

-horizontal adjustment (+/- 3.5mm continuous, +/-15mm global)

-guiding the vertical movement (ensuring no lateral dipl. during the vertical adjustement) -improoving the stiffness of the girder

DEFORMATION DUE TO GRAVITY

DEFORMATION DUE TO GRAVITY

2016

DEFORMATION DUE TO GRAVITY

- 11/09/2016 MEDSI The Girder System for the New ESRF Storage Ring
- 9

The European Synchrotron

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

EFFORTS IN STRUCTURE DUE TO SUPPORT OVERDEFINITION

EFFORTS IN STRUCTURE DUE TO SUPPORT OVERDEFINITION

EFFORTS IN STRUCTURE DUE TO SUPPORT OVERDEFINITION

If we consider only one Z support out of position \rightarrow 129N/µm (\rightarrow 1314Kg/0.1mm)

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

ESRF

Component defining the stiffness of the system:

Component defining the stiffness of the system:

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

Component defining the stiffness of the system:

11

The European Synchrotron

Component defining the stiffness of the system:

Component defining the stiffness of the system:

Ö

Ground: 200x200x100m E=520MPa G=179MPa

Ċ

Concrete floor: 20x4x0.8m E=30GPa G=12.5GPa

Ground: 200x200x100m E=520<u>M</u>Pa G=179<u>M</u>Pa

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520<u>M</u>Pa G=179<u>M</u>Pa

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520MPa G=179MPa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

Ċ

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520<u>M</u>Pa G=179<u>M</u>Pa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520MPa G=179MPa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

Ċ

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520<u>M</u>Pa G=179<u>M</u>Pa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
X	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520MPa G=179MPa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

Ċ

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30GPa G=12.5GPa

Ground: 200x200x100m E=520MPa G=179MPa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

The European Synchrotron ESRF

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520MPa G=179MPa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520MPa G=179MPa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520MPa G=179MPa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
	Vertical support	769N/µm

12

A test force is put on each of the support's connections

Concrete floor: 20x4x0.8m E=30<u>G</u>Pa G=12.5<u>G</u>Pa

Ground: 200x200x100m E=520MPa G=179MPa

Dir.	Position	Equivalent stiffness (each)
Х	Vertical support	667N/µm
Х	X jack	588N/µm
Y	Vertical support	435N/µm
Y	Y jack	417N/µm
Z	Vertical support	769N/µm

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

The European Synchrotron ESRF

Airlocs with spherical joint

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

The European Synchrotron

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

The European Synchrotron

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

The European Synchrotron ESRF

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

The European Synchrotron

FEM analysis to confirm the possibility to measure small deformation in the wedge

TEST OF NIVELL WEDGES BY TEKNIKER

TEST OF NIVELL WEDGES BY TEKNIKER

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

FINAL ANALYSIS

1/Keq=1/K1+1/K2

Dir.	Position	Ground+slab+base stiffness	Adj system (in the relative direction):	Global stiffness of equivalent elastic foundation
Х	Vertical support	667N/µm	1200N/µm	429N/µm
Y	Vertical support	435N/µm	1100N/µm	311N/µm
Y	Y jack	417N/µm	500N/µm	227N/µm
Z	Vertical support	769N/µm	1600N/µm	519N/µm

¹⁵ 11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

FINAL ANALYSIS

¹⁵ 11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

FINAL ANALYSIS

Vertical support769N/μm1600N/μm11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

Ζ

15

The European Synchrotron | ESTE

519N/µm

¹⁵ 11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

16

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring

Support "links" demountable (X-Y-Z) <u>Possibility to test several support</u> <u>solutions</u>

1111

Support "links" demountable (X-Y-Z) <u>Possibility to test several support</u> <u>solutions</u>

"Fake" girders to test the alignment system of different girders and support of the central magnet (DQ2)

16

Support "links" demountable (X-Y-Z) <u>Possibility to test several support</u> <u>solutions</u>

"Fake" girders to test the alignment system of different girders and support of the central magnet (DQ2)

Dummy magnets

Support "links" demountable (X-Y-Z) <u>Possibility to test several support</u> <u>solutions</u>

"Fake" girders to test the alignment system of different girders and support of the central magnet (DQ2)

Dummy magnets

The girder prototype was completed adding walls and roof simulating a segment of the tunnel, in order to make installation test of plants and alignment system

Ground noise amplification

The European Synchrotron

ESRF

Thanks for your attention!

Filippo Cianciosi – cianciosi@esrf.fr

11/09/2016 - MEDSI - The Girder System for the New ESRF Storage Ring