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Abstract 
A prototype of compact x-ray compound refractive lens 

(CRL) manipulator system has been developed at the Ar-
gonne National Laboratory for dark-field imaging of multi-
scale structures. This novel full-field imaging modality 
uses Bragg peaks to reconstruct 3D distribution of 
mesoscopic and microscopic structures that govern the be-
havior of functional materials, in particular, thermody-
namic phase transitions in magnetic systems. At the heart 
of this microscopy technique is a CRL-based x-ray objec-
tive lens with an easily adjustable focal length to isolate 
any region of interest, typically in the energy range of 5-
100 keV or higher, with high precision positional and an-
gular reproducibility. Since the x-ray CRL manipulator 
system for this technique will be implemented on a high-
resolution diffractometer detector arm that rotates during 
diffraction studies, compactness and system stability, along 
with the ability to change focal length (“zooming”), be-
came key design requirements for this new CRL manipu-
lator system. The mechanical designs of the compact x-ray 
CRL manipulator system, as well as finite element analysis 
for its precision alignment apparatus are described in this 
paper. 

INTRODUCTION 
The macroscopic properties of functional materials (in-

cluding most technologically relevant properties) are con-
trolled by microscopic and nano-scale features and pro-
cesses. It is important to deepen our understanding of cou-
plings between such multi-scale structural features (e.g. as 
twin boundaries, grain orientations, lattice distortions, or 
magneto-striction) and average materials properties (ther-
modynamic, magneto-caloric, pinning, transport, critical 
current, etc.) as well as order parameters. Furthermore, the 
nature of hysteretic magnetic and/or structural transitions 
and related phenomena (e.g. memory effects, domain net-
work, fluctuations, and relaxation) tuned in by magnetic 
fields at cryogenic temperature is of great interest. So, there 
is a growing need, especially in the wake of near diffrac-
tion-limited sources being on the horizon, to develop im-
aging techniques ideally suited for problems alluded to 
above and to complement well-known resonant and non-
resonant diffraction methods. 

 

While there is a plethora of x-ray microscopy tech-
niques that are poised to provide high-resolution real-space 
images of inhomogeneous materials at multiple length 
scales and their evolution through phase transi-tions, dark-
field x-ray microscopy (DFXM) stands out as a fast imag-
ing method [1-6]. This full-field imaging modality uses 
Bragg peaks to reconstruct 3D distribution of mesoscopic 
and microscopic structures in materials. A Bragg peak is 
excited and its intensity distribution is recorded using an 
area detector. However, the diffracted beam is passed 
through an x-ray objective lens to magnify and project onto 
a scintillator before detection with a high-resolution CCD 
camera. The key is to collect diffraction data of a particular 
Bragg peak as the sample is rotated around the momentum 
transfer, with a high precision, over a range of full 360o.  

A CRL-based x-ray objective lens [7-9] with an easily 
adjustable focal length to isolate any region of interest is a 
central piece of this microscopy technique. For such appli-
cation CRL-based x-ray objective lens operating over a 
wide energy range (e.g. 5-100 keV, or even higher), with 
high precision positional and angular reproducibility, need 
to be implemented on a high-resolution diffractometer de-
tector arm that rotates during diffraction studies. As such, 
compactness and system stability, along with the ability to 
change focal length, became key design re-quirements for 
this new CRL manipulator system. 

In this paper, we present a proof-of-principle prototype 
design for the compact x-ray CRL manipulator along with 
its preliminary x-ray test results first, followed by the de-
signs of the manipulators for 16-mm- and 32-mm-long 
CRL stacks, and conclude with the design options of the 
CRL manipulators integration. 

PROOF-OF-PRINCIPLE PROTOTYPE 
The novelty of the new mechanical design is the com-

pactness and positioning stability as well as repeatability 
of its unique flexural lens holder alignment structure. It is 
using commercial high precision V-rail for linear roller 
bearing [10] as a reference base.  

Figure 1 shows a 3D-model of the prototype for demon-
strating proof-of-principle of operation. As shown in Fig. 
1, the prototype CRL manipulator includes a base subas-
sembly with stage support and a base V-rail, a lens holder 
V-rail with lens holder frame subassembly, a commercial 
miniature piezo-driven linear stage (SmarActTM 1720s) 
[11], and a multi-dimensional flexural link subassembly. 
As shown in Fig. 2, a group of eight CRL is confined by a 
thin metal lens confiner, which is mounted on the bottom 
of the lens holder frame. A short linear bearing V-rail is 
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mounted in the lens holder frame as the top half of the lens 
alignment structure. At the linear stages lower limit posi-
tion, the flexural link subassembly, as shown in Fig. 3, pro-
vides multi-dimensional flexibility to ensure the CRL 
group to be fully aligned between the lens holder V-rail and 
the base V-rail. 

 
Figure 1: A 3-D model of the proof-of-principle prototype 
design for the compact x-ray CRL manipulator. 

 
Figure 2: A 3-D model of the eight CRL confined by a thin 
metal lens confiner, which is mounted on the bottom of the 
lens holder frame. 

X-RAY TEST FOR THE PROOF-OF-PRIN-
CIPLE PROTOTYPE 

A proof-of-principle prototype for the compact x-ray 
CRL manipulator was manufactured with 3D-printing 
technique as shown in Fig. 4. It is designed to hold a group 
of eight 2-D parabolic beryllium CRL lenses with 50 mi-
cron radius of curvature from RXOPTICSTM. The 2D-
lenses have a circular frame with a diameter of 12 mm and 
a thickness of 2 mm for each lens. The x-ray test was per-
formed at the APS 1-BM beamline using an 8 keV beam. 
The measured focal size of the lens stack is 4.1x1.7 μm2 
FWHM at 589 mm downstream of the lens stack as shown 
in Figs. 5 and 6. The total transmission of the stack is 36% 
within the 390×390 μm2 aperture, which gives a gain of 
~8000. 

The repeatability of the prototype manipulator was 
tested by moving the lens stack up and down. No measure-
able difference was observed. A second stack of 8 lenses 
was tested as well with a similar measured focal size. It 
indicates a good quality consistency of these lenses. 

 
Figure 3: A 3-D model of the multi-dimensional flexural 
link subassembly which links the lens holder frame with 
the carriage of the miniature piezo-driven linear stage. 

 
Figure 4: Photograph of the proof-of-principle prototype 
for the compact x-ray CRL manipulator manufactured with 
3D-printing technique and modified commercial THKTM 
linear bearing V-rail. 

 
Figure 5: The measured vertical focal size of the lens stack 
is 1.7 μm FWHM at 8 keV. 
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Figure 6: The measured horizontal focal size of the lens 
stack is 4.1 μm FWHM at 8 keV. 

DESIGN OF THE COMPACT MANIPULA-
TOR FOR 16-MM CRL LENS STACK 

Based on the experiences gained from the proof-of-prin-
ciple prototype, a compact manipulator APS Y9-5101 for 
16-mm CRL lens stack was designed using commercial 
miniature piezo-driven linear stage, such as SmarActTM 
1720s, as a lens manipulating driver. As shown in Fig. 7, a 
group of four Y9-5101 CRL manipulators are mounted on 
a pair of linear guiding rails and linked together as a unit to 
be driven by a manual or motorized linear motion driver 
for focal length adjustment. Since the manipulator preci-
sion alignment structure is based on the commercial high 
precision V-rail, a regular linear guiding system can be 
used for the focal length adjustment. Figure 8 shows two 
options of the linear guiding system for focal length adjust-
ment.  

To accommodate to the operation conditions on a dif-
fractometer detector arm that may rotate in horizontal as 
well as vertical planes during diffraction studies, a micro-
bearing has been added on the stage support structure as 
sown in Fig. 9 to confine the vertical tilting range of the 
flexural link subassembly. Figure 10 shows a 3D FEA 
model for the flexural link subassembly of the Y9-5101 
CRL manipulator. The results showed that the maximum 
Von-Mises stresses on the 250 micron thick flexural link 
with various operation conditions are well below the mate-
rial yield stress for 17-7-PH stainless steel.  

 
 

 
Figure 7: A 3-D model of a group of four Y9-5101 CRL 
manipulators mounted on a pair of linear guiding rails and 
linked together as a unit. 

 
Figure 8: Schematic diagrams for the two options of the 
CRL manipulators linear guiding system for focal length 
adjustment. Left: using ThomsonTM ball BushingTM system 
[12]. Right: using THKTM V-rails and rolling wheels. 

 
Figure 9: A 3-D model of the APS Y9-5101 compact ma-
nipulator with micro-bearing added on the stage support 
structure to confine the vertical tilting range of the flexural 
link subassembly. 
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Figure 10: A 3-D FEA model for the flexural link subas-
sembly of the Y9-5101 CRL manipulator.  

DESIGN OF THE COMPACT MANIPULA-
TOR FOR 32-MM CRL LENS STACK 

To manipulate CRL lens stack with longer total length, a 
compact manipulator APS Y9-5102 for 32-mm CRL lens 
stack was designed using commercial piezo-driven linear 
actuator, such as PicomotorTM 8353 [13], as a lens manip-
ulating driver with maximum axial driving force of 13 N. 
Figure 11 shows a 3D model of the Y9-5102 compact ma-
nipulator for 32-mm CRL lens stack.  

 

 
Figure 11: A 3-D model of the Y9-5102 compact manipu-
lator for 32-mm CRL lens stack. 

SUMMARY 
The mechanical designs of a new precision alignment 

apparatus for compact x-ray CRL manipulator system are 
presented in this paper. This CRL manipulator system is 
specially designed for dark-field imaging of multi-scale 
structures at the APS. Comparing with existing CRL ma-
nipulator designs [14, 15], it is compact, and suitable to be 
implemented on a high-resolution diffractometer detector 
arm that rotates during diffraction studies with limited load 
capacity. A prototype for proof-of-principle has been built 
and tested at the APS with promising results.  

Meanwhile, the compact modular designed CRL manip-
ulators are compatible with high-vacuum (HV) or ultra-
high-vacuum (UHV) operation conditions. The manipula-
tors integration flexibility provides wide range of applica-
tions for synchrotron radiation instrumentation. Figure 12 
shows a 3D model of a combination of four Y9-5101 and 
one Y9-5102 manipulators for a total of 48 CRL to be 
mounted on a ThomsonTM rail system with 140-mm travel 
range for focal length adjustment on a high-resolution dif-
fractometer detector arm for dark-field imaging applica-
tion. Figure 13 shows a schematic diagram for a combina-
tion of four Y9-5101 and nine Y9-5102 manipulators for a 
total of 159 CRL with an overall manipulators dimension 
of 468-mm. The 1+2+4+8+16x9 CRL lenses arrangement 
provides the flexibility to select any number between 0 – 
159 for the numbers of CRLs to be aligned into the x-ray 
beam. 
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Figure 12: A 3-D model of a combination of four Y9-5101 
and one Y9-5102 manipulators for a total of 48 CRL to be 
mounted on a ThomsonTM rail system with 140-mm travel 
range for focal length adjustment. The motorized linear ac-
tuator for focal length adjustment is not shown in the fig-
ure. 

 

 
Figure 13: A schematic diagram for a combination of four 
Y9-5101 and nine Y9-5102 manipulators for a total of 159 
CRL with an overall manipulators dimension of 468-mm. 
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