
NEW CONTROLS PLATFORM FOR SLAC HIGH-PERFORMANCE
SYSTEMS∗

Till Straumann, R. Claus, J. M. D’Ewart, J.C. Frisch, G. Haller, R.T. Herbst, B. Hong, U. Legat,
L. Ma, J.J. Olsen, B.A. Reese, L. Ruckman, L. Sapozhnikov, S.R. Smith, J. Vasquez,
M. Weaver, E. Williams, C. Xu, A. Young, SLAC, Menlo Park, California, USA

Abstract
The 1MHz beam rate of LCLS-2 precludes the use of a tra-

ditional software solution for controls of "high-performance
systems" which operate at this rate, such as BPMs, LLRF
or MPS. Critical algorithms are ported into FPGA logic
and administered by ordinary PCs via commodity Ethernet.
SLAC has developed a controls architecture which is based
on FPGA technology interconnected by 10G Ethernet and
commercially available ATCA shelves. A custom ATCA
carrier board hosting an FPGA, memory and other resources
provides a "common platform" for many applications which
can be implemented on AMC cards which are plugged into
the carrier. A library of firmware modules including e.g.,
timing, history buffers and reliable network communication
together with corresponding software packages complement
the common platform hardware and provide a standardized
environment which can be employed for a variety of high-
performance applications across the laboratory.

INTRODUCTION
The LCLS-2 XFEL is currently under construction at

SLAC. A superconducting linac supplies electron bunches
at a rate of up to 1 MHz. Several diagnostics, controls
and protection systems must be able to resolve individual
bunches and process data in real-time. A conventional con-
trol system based on computers with peripheral devices and
software based algorithms is – at the current state of the
art – not capable of meeting the necessary throughput and
latency requirements (considering that the actual data rate
some subsystems have to handle is much higher than the
beam rate of 1 MHz).

Therefore, the bulk of processing must be implemented in
programmable logic, leveraging a high level of parallelism
in hardware. SLAC has developed a new platform which is
based on the following technologies:

• ATCA [1] form-factor and commercial shelves.

• IPMI management [1].

• 10 G Ethernet communication.

• FPGA on generic ATCA carrier.

• Application-specific AMC cards.

An library of firmware components and a “common-
platform” software framework complement this versatile
and powerful instrumentation and controls platform.
∗ Work supported by the US Department of Energy, Office of Science under
contract DE-AC02-76SF00515

Since the hardware design has already been presented
elsewhere [2,3] this paper shall focus on the communication
protocols and software framework.

HARDWARE OVERVIEW
The platform employs a COTS ATCA shelf that provides

standardized mechanical support, power, cooling, manage-
ment and interconnect. The backplane’s fabric interface is
configured in a dual-star topology supporting up to 10 Gbps
per channel (with a 40 Gbps upgrade path). A block diagram
of the system is depicted in Fig. 1.

Figure 1: Common Platform System Diagram.

One star is concentrated at a 10 Gb Ethernet switch that
provides the main connectivity between ATCA boards as
well as an external Linux server computer (Fig. 1) which is
responsible for interacting with the firmware.
The second star is used to broadcast timing data and to

gather MPS (machine-protection) information that is further
aggregated by the custom general-purpose carrier board (as
described in the next paragraph) in slot 2‘. Timing and MPS
connectivity to the outside is provided by a custom RTM.

One core element is the custom carrier board that hosts a
Xilinx Kintex Ultrascale XCKU040 or -060 FPGA and 8 GB
of DDR3 memory. The FPGA’s SerDes interfaces are con-
nected to the Fabric interface as well as four AMC bays.
These bays can receive single- or dual-wide, full-height
AMCs. Additional LVDS and high-speed I/O is available
via the zone-3 connector to RTMs.

A variety of AMC cards (commercial and custom) can be
plugged into the carrier. A common use case are high-speed
ADCs for applications like BPMs or bunch-length monitors.
Placing analog components on well-shielded AMC cards
ensures that EMI effects can be minimized.

THHWPLCO02 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
72Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Hardware Technologies

Firmware Library
Many applications require a large set of complex, common

functionality such as DDR-memory, JESD, Ethernet commu-
nication, timing-system support, MPS uplink, diagnostics,
etc. These components are supported by an extensive library
of firmware modules (Fig. 2), thus greatly simplifying the
task of an application developer.

Figure 2: Common Platform Firmware.

COMMUNICATION PROTOCOLS
Communication between firm- and software is achieved

by means of a stack of protocols as shown in Fig. 3. On
top of Ethernet there is a layer of pseudo-IP/UDP. This is
(in firmware) a non-standard version of the widely-known
IP protocol that supports just enough functionality (e.g., no
fragmentation or IP options, no ICMP, etc.) to interoperate
with a standard network stack.

Ethernet

ARP

port port

SRP

TDEST TDESTTDEST

Application

packetizer packetizer

RSSI

"IP/UDP"

Figure 3: Protocol Stack; some layers are optional (e.g., no
RSSI at LHS UDP port).

The RSSI layer implements a reliable transport. It is based
on [4–6] with minor deviations, one of which adds a flow-
control feature. RSSI provides functionality similar to TCP
but is much simpler and adequate in the high-performance,
very reliable, switched LAN environment of the common
platform’s ATCA backplane.

The next, “packetizer”, layer handles datagram fragmenta-
tion to allow datagrams bigger than the Ethernet MTU. Note
the inverted arrangement compared with TCP/IP where frag-
mentation is handled below reliability. Obviously, the task
of reassembling large datagrams is much easier to do and
more efficient when layered on top of reliable delivery.

The packetizer header features a so-called “TDEST” ID
(having origin in the AXI [7] technology which is widely
used in firmware). TDEST serves a similar purpose as UDP
port numbers do, i.e., datagrams can be multiplexed to/from
different endpoints based on TDEST.
The top layer is the “SLAC Register Protocol” (SRP)

which defines simple read- and write- operations to address-
able entities such as registers or memory. The use of SRP is
optional, i.e., there are use-cases where raw datagrams (e.g.,
“events” or “streams”) are delivered to or received from the
application.
With TDEST multiplexing it is possible to share a

UDP/RSSI channel between multiple endpoints which may
or may not use SRP.
In software, the protocol layers are handled by protocol

modules which are assembled into a “stack” using the so-
called “builder-API” (see below).

COMMON PLATFORM SOFTWARE
While all high-performance operations which require a

high, sustained throughput and/or very low latency are im-
plemented in firmware there are still plenty of tasks left for
implementation in software: configuration, slow monitor-
ing, diagnostics, etc. A Linux server communicates with
firmware over 10 GbE (Fig. 1) and acts as a gateway to a tra-
ditional control system such as EPICS. However, rather than
directly interfacing the control system to the firmware, an
abstraction layer, the “Common Platform Software” (CPSW)
was designed.

• Provide abstracted access to firmware entities (mostly:
device registers) hiding details of Ethernet communi-
cation, endianness, offsets, etc.

• Present firmware entities as a hierarchical name space
(similar to Linux’ sysfs).

• Offers a standardized interface to firmware. Can be
accessed e.g., from python (development) and from
EPICS (production).

CPSW APIs
An important design goal for CPSW was a clear separa-

tion of APIs from implementation and partitioning of APIs
according to their core functionality. CPSW is written in
C++ and APIs (except for the “developer-API”) are defined
as abstract classes. Access to an API and the objects it de-
fines is obtained via factories which produce “smart” shared
pointers. This approach alleviates the user from having to
manage object lifetime explicitly and completely encapsu-
lates implementation details. There are three layers of APIs:

• “User-API”. All interactions of applications with the
firmware use this API. It offers “lookup” and “access”
operations in a hierarchical namespace (e.g., “find a
register”, “get value”).

Proceedings of PCaPAC2016, Campinas, Brazil THHWPLCO02

Hardware Technologies
ISBN 978-3-95450-189-2

73 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

• “Builder-API”. This API is used to create the hierarchy
of object instances which represents the entities imple-
mented in firmware. It uses abstract representations of
basic building blocks (“memory-mapped container”,
“register”).

• “Developer-API”. This API exposes the headers of the
underlying classes and allows existing classes to be
extended, etc. It is used to implement new building
blocks that can be instantiated via the builder-API and
accessed via the user-API.

The user- and builder- APIs are independent views of the
underlying classes and are abstract. This guarantees that
implementation details can be changed without affecting an
application. The separation between user- and builder- API
allows for a complete separation of the application proper
that accesses and manipulates firmware from the code which
constructs the tree of drivers. I.e., when the layout of a
firmware register changes then only the “build” process
needs to be modified but the core application is guaranteed
to be unaffected.

User-API If a user wants to manipulate e.g., a firmware
register then the corresponding entry is first located by name
(similar to a directory lookup; blue arrows in Fig. 4) yielding
a “Path” handle. Access to the functionality offered by an
item is performed via a so-called interface. A CPSW inter-
face is also an abstract class that offers access methods (e.g.,
“get integer value”). The user attempts to “create” or “open”
an interface to the target entry from the Path handle. If the
underlying class indeed implements the desired interface
then a smart pointer to the interface is passed to the user
(green arrow in Fig. 4); otherwise an exception is raised.
The user may then go on and access the interface.

Basic interfaces include “ScalVal” (get/set integer value),
“DoubleVal” (get/set floating-point value), “Command” (ex-
ecute an operation).

getVal()

setVal()Field

IntMMIO

Dev
Implementation: ScalVal

Interface

path lookup ("reg1")

ScalVal interface create/open

builder API: attach(IntField("reg1"))

children:

"reg1"

User API "device/reg1"

path lookup ("device")

Figure 4: CPSW User-API and Implementation Layers.

YAML Firmware/Hardware Description
Traditionally, a driver-writer often has to extract detailed

information about a device (such as register offsets, bitmasks,
etc.) from a manual and translate it into definitions which
would typically be coded into a header file. This process is
cumbersome and error-prone.
The separation between user- and builder- API was also

driven by the desire to automate these steps. This is accom-
plished by the firmware engineer providing device descrip-
tions in the YAML [8] data serialization format which meets

our requirement of a standardized, human- and machine-
readable interchange format. See Fig. 5 for an example.

device:

 class: MMIODev

 children:

 reg1:

 class: IntField

 sizeBits: 32

 at: { offset: 0x00 }

Figure 5: Excerpt YAML Description of Example in Fig. 4.

Larger systems are assembled from device descriptions
and result in a YAML file which defines the complete hier-
archy implemented in firmware.
A CPSW application can then simply load a YAML de-

scription without the need to explicitly use the builder-API.
Any firmware modification (as long as it doesn’t directly
affect functionality “seen” by the user-API) can then be han-
dled in a completely transparent way – provided it is properly
reflected in the YAML description.

CPSW Extensions and Dynamic Loading
CPSW supports dynamic loading of driver classes making

it possible to extend the core functionality in a modular way.

Python Bindings
Bindings for Python2.7 and Python3 are provided.

CONCLUSION
The new platform supports a lot of common functionality

at the hard- firm- and software level which can be leveraged
by specialized high- performance systems in order to reduce
development time and cost as well as simplify maintenance.

REFERENCES
[1] PICMG, “AdvancedTCA Overview,” https://www.picmg.

org/openstandards/advancedtca/
[2] J. Frisch et al., “A FPGA Based Common Platform for LCLS2

Beam Diagnostics and Controls,” in Proc. IBIC’16, Barcelona,
Sep. 2016, paper WEBPG15.

[3] R. Herbst, “ATCA Based Accelerator Controls & Detec-
tor Platform”, EPICS Collaboration Meeting, Oak Ridge,
September 2016, https://conference.sns.gov/event/
11/session/1/contribution/39

[4] D. Velten, R. Hinden, and J. Sax, “Reliable Data Protocol,”
July 1984, https://tools.ietf.org/html/rfc908

[5] C. Partridge and R. Hinden, “Version 2 of the Reliable Data
Protocol (RDP),” April 1990, https://tools.ietf.org/
html/rfc1151

[6] T. Bova and T. Krivoruchka, “Reliable UDP Protocol,”
DRAFT, February 1999, https://tools.ietf.org/html/
draft-ietf-sigtran-reliable-udp-00

[7] ARM Ltd., “AMBA Documentation,” http://infocenter.
arm.com/help/topic/com.arm.doc.set.amba/index.
html

[8] O. Ben-Kiki, C. Evans, and I.d Net, “YAML Ain’t Markup
Language Version 1.2,” http://www.yaml.org/spec/1.
2/spec.html

THHWPLCO02 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
74Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Hardware Technologies

