# **Cavity Cut-Out Studies of a 1.3GHz Single-cell Cavity after a failed Nitrogen Infusion Process**

Marc Wenskat<sup>1,2\*</sup>, C. Bate<sup>1,2</sup>, A. Jeromin<sup>2</sup>, T. Keller<sup>2</sup>, J. Knobloch<sup>3,4</sup>, O. Kugeler<sup>3</sup>, J. Köszegi<sup>3</sup>,

- F. Kramer<sup>3,4</sup>, D. Reschke<sup>2</sup>
- <sup>1</sup> Universität Hamburg, Germany
- <sup>2</sup> Deutsches Elektronen-Synchrotron, Germany
- <sup>3</sup> Helmholtz-Zentrum Berlin, Germany
- <sup>4</sup> Universität Siegen, Germany

# **Nitrogen Infusion R&D at DESY**

- Nitrogen infusion [1] is a promising but not well understood process to improve cavity performance.
- Severe deterioration of cavity performance after first infusion runs in the DESY furnace was observed [2].
- The deterioration was inverse proportional to the pressure at 300°C
  - $p_{1DE16} < p_{1DE17} < p_{1DE18}$  at 800°C





#### **1DE16**

- Fine grain single-cell cavity (Ningxia).
  - Reference:  $E_{acc.max} = 32 \text{ MV/m (BD)}; Q_0(4\text{MV/m}) = 2.7 \times 10^{10}$
- Baked twice according to nitrogen infusion temperature profile at 120°C w/o nitrogen
  - 1<sup>st</sup> Bake:  $E_{acc max} = 27 \text{ MV/m}$  (BD);  $Q_0(4\text{MV/m}) = 2.7 \times 10^{10}$
  - 2<sup>nd</sup> bake: E<sub>acc,max</sub> = 26 MV/m (PWR); Q<sub>0</sub>(4MV/m) = 3.2x 10<sup>9</sup>

- $Q_0(4MV/m)_{1DE16} > Q_0(4MV/m)_{1DE17} > Q_0(4MV/m)_{1DE18}$
- Samples showed niobium carbides forming during that phase.
- To test the transferability of sample studies to the cavity Figure 1: Quality factor vs. accelerating field of the first three single cell cavities used for surface and to investigate the deterioration of the cavities, 1DE16 was cut.

# **Identifying Regions of Interest**

T-map data, 2<sup>nd</sup> Sound data, optical inspection and H-map [3] data was gathered and 8 regions of interest were identified.



Table 1: Sample list of cut-outs.

|  | Diagnostics                  |               | Position              |            |              | Sample |
|--|------------------------------|---------------|-----------------------|------------|--------------|--------|
|  | T-map DESY                   | Quench Spot 1 | 170° - Below E        |            |              | 1      |
|  | 2 <sup>nd</sup> Sound Test 3 |               | 170° - E-24mm         |            |              |        |
|  | H-map HZB                    |               | 170° - near beam pipe |            |              |        |
|  | 2 <sup>nd</sup> Sound Test 4 | Quench Spot 2 | 70° - on Equator      |            |              | 2      |
|  | T-map HZB                    | Hot Spots     | 240° E+2cm            | 240° E-1cm | 115° E+1.5cm | 3/4/5  |
|  |                              | Cold Spots    | 155° E-1cm            | 215° E+1cm | 30° E        | 6/7/8  |

- Quench spot 1 was not the limiting region after the infusion procedure but still showed significant flux trapping of 1.5  $\mu$ T in the H-Map.
- No H-Map of quench spot 2 was obtained due to a malfunctioning card.
- The samples were square shaped with a side length of ~1.5cm.

Figure 2: Temperature map of 1DE16 – white squares are the position of the H-Map cards. A rather homogenous heating with only three dominant heating spots is observed.

### **Origin of Deterioration**

β-Nb<sub>2</sub>C has been found on the surface of samples treated in the DESY furnace [2]. If those are forming on the inner cavity surface and if they are related to the observed heating was investigated.

infusion R&D. Reference measurements (blue) and measurements after treatment (red) are shown. The same deterioration for all cavities are observed.



- A smaller carbon signal was observed in the SIMS measurements for cold spots compared to hot spots.
- SEM images showed that niobium carbides form on the inner surface as well.
- Cold spot samples showed less and smaller carbides on the surface than hot spots samples.



Figure 4: SEM Images of sample 2 (top – quench - black) and 8 (bottom - cold post - blue). The right plots shows the exponential decay constant  $\lambda$  of the size distribution of the niobium carbides.

Figure 3: Normalized  $C_{2}^{-}$  - signal of each sample in the first 10nm obtained with a TOF-SIMS. Quench spots and hot spots showed a higher carbon content in this first layer.

# **Influence on Carbon Solubility**

• What causes the difference in the carbon solubility and formation of niobium carbides? Lattice structure and interstitials were investigated.

#### Conclusions

- Niobium carbides form also on the inner cavity surface and their size and density are correlated to the local heating.
- They form during the 800°C bake in the DESY furnace. The origin of the residual carbon is still unclear.
- EBSD data showed a small excess of low angle grain boundaries on hot spot samples compared to cold spot samples.





Figure 5: Local misorientation data for hot spots (red) and cold spots (blue). Average over 2 measurements per sample, covering a 200x150 grid with a 10 µm step size. An excess of low angle grain boundaries for hot spots compared to cold spots was found.

Figure 6: Zirconium concentration for some samples according to PIXE. A slightly higher concentration in the hot spot and quench spot samples compared to the cold spots samples was found.

• Additional elemental analysis of the samples with PIXE showed a higher zirconium content in the hot spots. Zirconium is a known pollution on Nb material [4] and in Nb-Zr-C alloys Zr can act as a catalyst on the formation of niobium carbides [5].

#### References

1) Grassellino et al., Supercond. Sci. Tech 30.9 (2017): 094004.

- 2) Wenskat et al., Proceedings of LINAC2018, TH2A01
- Schmitz et al., Rev. Sci. Instrum. 89.5 (2018): 054706 3)
- Singer et al., Supercond. Sci. Tech 28.8 (2015): 085014 4)
- Grobstein et al. "Characterization of Precipitates in a Nb-Zr-C Alloy", DOE/NASA/16310-6 (1986)



Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany