Operation of the European XFEL Towards the Maximum Energy

Mathieu Omet for the linac team

SRF 2019, Dresden, 01.07.2019

Contents

Introduction

- Reaching the Design Electron Energy
 - Current RF Operation Status
 - Summary

The European X-ray Free Electron Laser (XFEL)

- Soft and hard X-ray light experiments
- ~800 TESLA-type cavities
- Resonance frequency 1.3 GHz
- 32 cavities per XTL RF station
- Design energy 17.5 GeV
- Pulsed operation at 10 Hz

ARCH FOR GRAND CHALLENGE

First lasing SASE2 **First lasing SASE1** Flexible Beam Distribution March 13, Commissioning @ 1.8 Å 2018 @9Å Timeline 75 @ 101 3 🛬 13685 MeV 30 @ 101 1 20 @ 100 % May - October, 2018 May 1, 2018 May 2-3, 2017 A7 ... A24 A25 BC1 A5 BC2 A.3 A4 A1 AH1 LH April 27, 2017 Jan 13, 2017 Feb 2, 2017: 600 MeV First lasing SASE3 Feb 22, 2017: 2.5 GeV @ 1.3 nm Feb 25, 2017: 2.5 GeV April 8, 2017: 12 GeV Jan 15, 2017: 130 MeV Oct 23, 2017: 14.9 GeV Jan 19, 2017: 600 MeV July 12, 2018: 17.6 GeV Nov 2, 2018: 2699 bunches/RF pulse February 8, 2018 ELMHOLTZ DES

Operation of the European XFEL Towards the Maximum Energy

Mathieu Omet. 01.07.2019

European XFEL

Achievements 2018

CH FOR GRAND CHALLENGE

10th of June 2019: up to 250 μ J at 20 keV

14 GeV electron energy

Maximal Energy as of 23rd of June 2017

RF station number

LMHOLTZ

European XFEL

Formation of the Maximum Gradient Task Force

Concept

- Team of experts (core team of 7 with more than 7 experts supporting)
- Investigation of single stations in parallel to regular beam operation, including user runs
- Investigation on single cavity granularity
- Checklist for unified testing procedure
- Work out solutions for maximal possible gradient (discussions, calculations, simulations, etc.)
- Document findings in station reports

.MHOLTZ

Procedure

- Prepare RF station
- Perform study
 - VS voltage is slowly increased until one of the following limits is hit
 - Cavity quench
 - ► Field emission limit
 - ► High power chain limit
 - ► Waveguide sparking
 - If a cavity quenches in multipacting regime, try to condition it, other wise confirm quench limit, detune cavity and continue voltage increase
 - Field emission is measured with MARWIN drive-by, otherwise BLM signals give a hint
 - If klystron is close to saturation, klystron high voltage is increased
 - Sparking waveguide part is identified with sound detectors and exchanged when tunnel access is possible
 - Taking data at several points and typically close to the limits
 - The configuration, which yields highest VS voltage is kept and setup in closed loop
 - Restore RF station for operation

European XFEL

Schedule

- First investigation on 21st of June 2017
- 40 investigations performed so far
- 20 of 20 stations in L3 investigated
- 20 of 20 stations reached final limit
- 1 of 3 stations in L2 investigated
- 0 of 1 stations in L1 investigated
- 0 of 2 stations in injector investigated

Date	Station	Comment	Date	Station	Comment
21.6.2017	A19		21.3.2018	A16	
12.7.2017	A19		28.3.2018	A17	
26.7.2017	A15		4.4.2018	-	shutdown
2.8.2017	A11		11.4.2018	-	shutdown
10.8.2017	A20		18.4.2018	-	shutdown
23.8.2017	A20		25.4.2018	-	
23.8.2017	A18		2.5.2018	-	
30.8.2017	A21		8.5.2018	A5	
6.9.2017	A22		16.5.2018	A23	
13.9.2017	A13		23.5.2018	A20	
20.9.2017	A14	user run	30.5.2018	A12	
27.9.2017	A10	user run	6.6.2018	A12	
4.10.2017	-	maintenance	13.6.2018	A9	
11.10.2017	-	maintenance	20.6.2018	-	shutdown
18.10.2017	-	maintenance	27.6.2018	-	shutdown
25.10.2017	-		4.7.2018	-	shutdown
1.11.2017	A13		11.7.2018	-	
8.11.2017	-	lack of spare station	18.7.2018	-	
15.11.2017	-	lack of spare station	25.7.2018	A25	
22.11.2017	-	lack of spare station	1.8.2018	A24	
29.11.2017	-	lack of spare station	8.8.2018	A9	
5.12.2017	A13	quick check	15.8.2018	A8	
6.12.2017	-	shutdown	22.8.2018	A7	
13.12.2017	-	shutdown	29.8.2018	A6	
20.12.2017	-	shutdown	05.09.2018	-	
27.12.2017	-	shutdown	12.09.2018	-	
3.1.2018	-	shutdown	19.09.2018	A20	
10.1.2018	-	shutdown	26.09.2018	-	
17.1.2018	-	shutdown	03.10.2018	-	
24.1.2018	-	shutdown	10.10.2018	A23	aborded
31.1.2018	A13		17.10.2018	-	
7.2.2018	-	TTC meeting	24.10.2018	-	
14.2.2018	-	He pressure test	31.10.2018	-	
21.2.2018	-	BBS Travemünde	07.11.2018	-	
28.2.2018	A18		14.11.2018	A23	
7.3.2018	A14		21.11.2018	A7, A25	
14 3 2018	Δ12				

Milestone: Design Energy Reached

- 17.6 GeV at TLD on 12.7.2018
 With 2.6 GeV after BC2
 Further investigations followed
- 17.6 GeV at TLD on 18.7.2018With design energy of 2.4 GeV after BC2
- Energy gain due to MGTF: 1.9 GeV
 Nearly 11% of final energy
 Equal to about 2.4 L3 RF stations

Mathieu Omet. 01.07.2019

RF Performance as of End of 2018

Reached an average of 93.6% of AMTF performance

Main Limitations for VS Voltages

- Quench (soft quenching)
- Field emission (500 µSv/h neutrons)
- Power / missing piezo operation

- Other limitations were overcome
 Waveguide sparking
 Too low klystron power
- In several cases the waveguide system is not optimal

A9 and A12 vector sums limited by dark current

A12

- Limit set to 720 MV (quench limited)
- RADFET radiation rate too high
- Reduced to 710 MV
 - ► M2.C2 detuned due to strong FE

A9

- First direct use of MARWIN to set operations limit
- Ad hoc limit of 500 µSv/h neutron rate
 - Resulted in 770 MV operational limit
 - ▶ Quench limited at ~800 MV

- Quench behavior reproducible
- Higher cryo load can be tolerated to a certain level
- We are operating this station without
 M3.C5 in the "soft" quench regime
 M3.C5 creates too much cryo load
 - VS limit at 680 MV
 - Corresponding cavity gradients marked in the plots by dashed lines

Single cavity performance (AMTF vs XTL)

- Quench limits of 76 cavities were determined
 Not practical to re-measure all 800
 Generally one per module (up to 3)
- Only 3 cavities identified as having degraded from AMTF test
 - Two were not limiting station performance
- Additional 12 cavities were detuned due to MGTF investigations
 - See next slide

Detuned cavities

Reason of detuning	Nı Ca	umbe avities	r of S		
After AMTF tests (A)	5 (~0.6%)				
After tests in XTL (A)	5 (~0.6%)				
MGTF (0)	12 (~1.5%)				
Sum	22 (~2.8%)				
		A	0		
Coupler 70k OH		4			
Strong FE		2			
MGTF (limiting VS)		9		
BD degraded			2		
Low BD		2			
High cryo load			1		
Unknown		1			
WDS spec error		1			

Status of Maximum Gradient Task Force

📕 Phase 1 🗸

Status survey

Reach maximal VS voltages without hardware modifications

- 🔳 Reaching 17.5 GeV 🗸
- Phase 2 (Transition to Linac Operations Team)
 - Reach maximal VS voltages with hardware modifications
 - Cavity power optimization by waveguide distribution adjustments
 - Retune as many of the 22 cavities as possible
 - Investigations for keep operating all RF stations at established maximal VS voltages
 - Long time performance surveillance

LLRF Regulation Performance and Health Tracking

RF flattop amplitude and phase stability (RMS)
 XFEL specifications: ΔA ≤ 0.01%, ΔΦ ≤ 0.01 deg.
 Constantly met since commissioning in 2017

Keeping track of LLRF station health

									2019-04-25 09:21:16					
GUN	A1.11	AH1		A2.L1		A3.L2	A4.L2	A5.L2	A6.L3	A7.L3	ABLU	A9.L3	A10.L3	A11.
IN ON	DE ON	DE CON		DE ON		RE ON	DI ON	IN ON	IN S	IN S	III S	IN S	IN S	In c
KLY.	KLY.	KLY.		KLY		KI Y	KI Y	KI Y	REV	KLV	RI V	RI Y	KLY	HO YO
- ner	OLIENCH	OLIENCH		OLIENCH		OUENCH	OUENCH	OUENCH	OUENCH	OUENCH	OLIENCH	OUENCH	OUENCH	OUEN
TIMER	TIMER	TIMER		TIMER		TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIME
	LOG	LOG		LOG		LOG	LOG	LOG	LOG	LOG	LÓG	LOG	LOG	LOC
	DCM	DCM		DCM		DCM	DCM	DCM	DCM	DCM	DCM	DCM	DCM	DC
	DIAG	DIAG		DIAG		DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIA
	PIEZO	_		PIEZO		PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZ
RACK	RACK	RACK		RACK		RACK	RACK	RACK	RACK	RACK	RACK	RACK	RACK	RAC
MPS	MPS	MPS		MPS		MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS
PSM	PSM	-PSM-		PSM		PSM	PSM	PSM	PSM	PSM	PSM	PSM	PSM	-PSI
A12.L3	A13.L3	A14.L3	A15.L3	A16.L3	A17.L3	A18.L3	A19.L3	A20.L3	A21.L3	A22.L3	A23.L3	A24.L3	A25.L3	
M S	M S	MS	M S	M S	MS	M S	M S	M S	M S	M S	M S	M S	M S	
RF ON	RF ON	RF ON	RF ON	RF ON	RF ON	RF ON	RF ON	REON	RF ON	RF ON	RF ON	RF ON	RF ON	
KLY	KLY	KLY	KLY	RLY	KLY	NLY.	KL.Y	RLY	BLY	KLY	KLY	RLY	RLY	
QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	QUENCH	
TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER	
LOG	LOG	LOG	LOG	LOG	LOG	LOG	LOG	LOG	LOG	LOG	LÖG	LOG	LOG	
DCM	DCM	DCM	DCM	DCM	DCM	DCM	DCM	DCM	DCM	DCM	DCM	DCM	DCM	
DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	DIAG	
PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	PIEZO	
RACK	RACK	RACK	RACK	RACK	RACK	RACK	RACK	RACK	RACK	RACK	RACK	RACK	RACK	
MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS	MPS	

European XFEL

Operation of the European XFEL Towards the Maximum Energy

Piezo Status

- Driver electronics for piezos, which compensate cavity detuning during RF pulse
 - Installed at all XTL RF stations
- Cabling check
 - 61 issues found
 - Only 4 RF stations unaffected

- Completion of cabling repair and commissioning expected to be finished by summer 2019
- Piezo automation successfully tested
 - Full piezo operation demonstrated at A17 and A24

RESEARCH FOR GRAND CHALLENGES

Multi Flattop Operation

- Definition of flattop regions via the timing system
- Setting different amplitude and phase set points via the LLRF systems
- Allows e.g. different compression settings for different bunch trains / beam lines
 - Typically used in sections L1 and L2

11	L1	L2	L3	Klystron Cryo
	Cryostring 1	Cryostring 2	Cryostring 3 · · · Cry	ostring 8 0
A1 AH1 I10	BC1	BC2		
RF gun 3.9GHz	DL A2 BC1	A3 A4 A5 BC	2D A6 A7 A8 A21	A22 A23 A2
5 MeV 130 M	VeV 700 MeV	2.4 GeV		

European XFEL

BLC compensates beam loading, assuring same energy gain for all electrons along bunch trains

Commissioned on all RF stations

European XFEL

European XFEL

European XFEL

Beam Loading Compensation and Full Length Bunch Train Operation

- 650 µs long RF pulse in gun and SRF modules
- Energy jitter over bunch train < 5E-4
- No losses, 80 kW beam power safely distributed to beam dump

2nd of November 2018

Summary

- General introduction
- Commissioning timeline
- Reaching design electron energy
 - Basic commissioning of the RF stations did not yield design electron beam energy → Formation of MGTF
 - All 20 L3 RF stations have been systematically investigated and reached their preliminary limits
 - Maximum beam energy increase: 1.9 GeV
 - Demonstrated beam acceleration at 17.6 GeV to TLD
 - Identified only three cavities, which one could classify as degraded
- Effort to stay at maximal voltages

- RF operation
 - Reliably meeting RF stability requirements since commissioning
 - Piezo driver electronics under commissioning
 - Multi flattop operation
 - Commissioned beam loading compensation allows acceleration of full bunch train length of 2700 bunches

Thank you very much for your attention! Questions?

Live status of the European XFEL: http://tesla.desy.de/status_PNGs/XFEL_StatusPublic.png

SRF2019 DESY contributions:

European XFEL

ID	Title	Author
Tutorial	LLRF Controls and RF Operation	J. Branlard
MOFAA2	RF Operation and Reaching Design Energy at the European XFEL	M. Omet, et al.
MOP023	NITROGEN INFUSION SAMPLE R&D AT DESY	C. Bate, et al.
MOP024	Vacancy-Hydrogen Dynamics in Samples during Low Temperature Baking	M. Wenskat, et al.
MOP025	Cavity Cut-Out Studies of a 1.3GHz single-cell cavity after a failed Nitrogen Infusion Process	M. Wenskat, et al.
MOP026	A Cross-Lab Qualification of Modified 120°C Baked Cavities	M. Wenskat, et al.
MOP034	European XFEL: Accelerating Module repair at DESY	D. Kostin, et al.
MOP070	Investigation of the Critical RF Fields of Superconducting Cavity Connections	J. Wolff, et al.
MOP082	Measurement of the vibration response of the EXFEL RF coupler and comparison with simulated data (Finite Element Analyses)	K. Jensch, et al.
TUFUA6	Surface Analysis of Niobium After Thermal/gas Treatments via Samples - Review	A. Dangwal-Pandey, et al.
TUP020	Statistical Analysis of the 120°C Bake Procedure of Superconducting Radio Frequency Cavities	L. Steder, et al.
TUP023	Experience of LCLS-II Cavities Radial Tuning at DESY	A. Sulimov, et al.
TUP024	Radial Tuning Devices for 1.3 GHz TESLA Shape Cavities	J. Thie, et al.
TUP033	Modal analysis of the EXFEL 1.3 GHz cavity and cryomodule main components and comparison with measured data	S. Barbanotti, et al.
TUP099	Particulate sampling and analysis during refurbishment of prototype European XFEL cryomodule	N. Krupka, et al.
THP004	Design and Fabrication of a Quadrupole-Resonator for Sample R&D	R. Monroy-Villa, et al.
THP073	Advanced LLRF system setup tool for RF field regulation of SRF cavities	S. Pfeiffer, et al.
THP080	Status of the All Superconducting Gun Cavity at DESY	E. Vogel, et al.
THP092	STATUS OF CRYOMODULE TESTING AT CMTB FOR CW R&D	A. Bellandi, et al.
THP100	Insight into DESYs Test Laboratory for Niobium Raw Material and Semi-finished Products	J. Iversen, et al.
FRCAB08	Systematic Studies of the Second Sound Method for Quench Detection of Superconducting Radio Frequency Cavities	L. Steder, et al.

ELMHOLTZ

