
IMPLEMENTATION OF AN FPGA BASED SYSTEM SURVEY AND
DIAGNOSTIC READER WITH THE AIM TO INCREASE SYSTEM

DEPENDABILITY
Marcel Alsdorf, Bernd Dehning, Maciej Kwiatkowski, William Vigano, Christos Zamantzas

CERN, Geneva, Switzerland

Abstract

The operation and machine protection of accelerators
practically rely on their underlying instrumentation sys-
tems and a failure of any of those systems could pose a
significant impact on the overall reliability and availabil-
ity. In order to improve the detection and in some cases the
prevention of failures, a survey mechanism could be inte-
grated to the system that collects crucial information about
the current system status through a number of acquisition
modules.

The implementation and integration of such a method
is presented with the aim to standardize the implementa-
tion, where the acquisition modules share a common build
and are connected through a standardized interface to a sur-
vey reader. The reader collects regularly data and controls
the readout intervals. The information collected from these
modules is used locally in the FPGA device to identify crit-
ical system failures and results in an immediate failsafe re-
action with the data also transmitted and stored in external
databases for offline analysis.

INTRODUCTION

The basic functionality of the System Survey and Di-
agnostic Reader is to readout diagnostic data from external
chips and sensors connected to an FPGA, process them and
finally log them in a database or directly use them on-chip
to monitor the system status.

The general goal is, to utilize such a reader on the beam-
loss monitoring (BLM) electronics for the CERN injector
complex. This system consists of three FPGAs mounted
on three different PCBs, where each of them is connected
to different kinds of external diagnostic chips and sen-
sors. For a detailed overview on this particular system see
TUPA09 [1].

To realize this goal, a design is needed, that is suitable
for many different environments. In this case such an en-
vironment would be primarily defined by the number and
types of different diagnostic interfaces and by the means of
processing and forwarding those informations to an exter-
nal logging database.

In the following sections the fundamental concepts, the
design and the implementation of this System Survey and
Diagnostic Reader will be presented, that is independent
from the types of external diagnostic interfaces used and
from its surrounding environment.

GENERAL CONCEPT
The key to any new hardware or software design or the

enhancement of a given one is to evaluate the performance
of it with regards to the quality characteristics defined in
ISO 25010 [2]. Through this method, the usefulness of a
design can be evaluated and weak points can be revealed
and reinforced accordingly.

One approach to achieve this goal is to carefully divide
the underlying problem into multiple smaller and easily
solvable problems. In a software environment this is an
old and well know approach called Divide-and-Conquer.
In a hardware environment it is fairly unused. Due to typ-
ically long development times in hardware design, design-
ers are often times discouraged to invest even more time
in the generalization and optimisation of their design ac-
cording to those quality characteristics. In term it is often
overlooked, that in most cases it is sufficient to invest this
additional time only once and to profit from it thereafter in
upcoming design challenges.

In the here presented System Survey and Diagnostic
Reader the approach is taken to logically divide the hard-
ware design into two abstraction levels. The fundamental
architecture of the design builds the lower level. This ar-
chitecture defines the structure of design components, the
general behaviour of them and their way of communicat-
ing with each other. The upper level on the other hand is
defined by the functional model of the design. On this ab-
straction level those before mentioned components are seen
as sub-functions, that can be combined to build more com-
plex functions and consequently entire digital systems.

In the following two sections the fundamental architec-
ture and the functional model for the System Survey and
Diagnostic Reader are presented and analysed with respect
to their improvements in design quality. As fundamental
architecture a modular structure is used called Common
Modular Interconnect (CMI).

COMMON MODULAR INTERCONNECT

In a typical digital architecture functional modules are
specifically build with respect to their surrounding envi-
ronment. This approach leads to various problems. Firstly,
they depend on the timing behaviour of their surrounding
modules. If there are modules, that take a given amount of
time to complete their task, they introduce a high delay in
this area of the design. Consequently, neighbouring mod-
ules have to be adapted to ensure proper timing. This con-
dition in turn limits those neighbouring modules to work

Proceedings of IBIC2012, Tsukuba, Japan TUPA29

Data Acquisition Techniques

ISBN 978-3-95450-119-9

409 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)



only in this particular local environment. Secondly, mod-
ules often times incorporate very specific input and output
ports. This limitation exist due to the fact, that these mod-
ules had to be able to talk to a certain module in a specific
design environment.

Those two problems alone hinders any designer to utilize
an already implemented version of the requested function-
ality in his own design. Consequently he has to write the
exact same module all over again in a different packaging,
which once more is only suitable for his specific design.

Figure 1: The general structure of the CMI interconnection.
An independent pair of rx next and rx vld signals is needed
for every additional receiver module.

To circumvent such problems a fundamental architecture
has been developed called Common Modular Interconnect
(CMI). The general assumption given by this architecture
is, that any system can be divided into independent mod-
ules, that are connected among themselves with a common
interconnect (see Fig. 1). This interconnect implements a
certain protocol between a single transmitter module and
one or more receiver modules. These modules perform a
predefined handshake utilizing the two signals vld and next.

Generally speaking, the vld signal is used by the trans-
mitter module to mark the current data on the data lines
as valid data and the next signal is used by the receiver
module to declare, that the valid data on the data lines can
not be processed in the current clock-cycle. Utilizing these
handshake signals, the interconnect is able to resolve tim-
ing inconsistencies by locally stopping the dataflow.

A typical case is, that a receiver module might not be
able to process incoming data from a transmitter module
and therefore informs the corresponding transmitter about
this hold-up through the next signal. In the case, that this
hold-up takes a bunch of clock-cycles to be resolved, the
corresponding next signal might be forwarded through a
whole chain of overlying modules and thus stopping them.

This state can be ultimately resolved by the interconnect it-
self. But it could happen, that this information reaches the
topmost module in the chain, which is typically an acqui-
sition module. In that case, data could be lost, as in most
cases it is not possible to forward the next signal to the
data source. If this happens and it actually would come to
the loss of acquisition data, either the functional model is
not suitable for such a frequent change of incoming data or
the hardware resources are too slow to handle such a data
stream. This problem can not be resolved by any funda-
mental architecture.

Analysing this fundamental architecture in terms of
quality characteristics, the presented one is in compliance
with most of them, including:

∙ learnability - The designer only has to handle the in-
terconnect protocol correctly. The real complexity of
the CMI architecture is hidden inside the interconnect.

∙ interoperability - Every module is able to interact
with any other module, assuming both are in compli-
ance with the CMI protocol and port.

∙ changeability - Modules and entire sub-function can
easily be replaced by different modules.

∙ stability - Changes inside modules have little to no
impact on the stability of the entire design. Modules
can be designed independently of their surroundings.

∙ testability - This architecture is designed to test mod-
ules independently from one another with regards to
CMI protocol compliance and internal functionality.

∙ adaptability - Rather complex designs can be adapted
to new specifications through the simple exchange of
modules.

∙ replaceability - Modules or sub-functions can easily
be replaced by different versions of the same function-
ality or a completely different one.

As a final note, this architecture is not only utilized in
the here presented Diagnostic Reader, but it is and will be
used throughout the entire digital framework of the BLM
injector electronics.

FUNCTIONAL MODEL
In order to create a suitable design, the functional model

has to include the main functional tasks. For the System
Survey and Diagnostic Reader they are defined as follows.
Firstly the readout of diagnostic informations from con-
nected external chips and sensors has to be triggered by
a timer. This trigger is issued in a predefined, but change-
able interval called an update cycle. Due to possible run-
time differences between multiple diagnostic interfaces all
readouts have to be stored locally with the begin of the fol-
lowing update cycle.

TUPA29 Proceedings of IBIC2012, Tsukuba, Japan

ISBN 978-3-95450-119-9

410C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

Data Acquisition Techniques



Figure 2: Functional Model of the System Survey and Di-
agnostic Reader. CMI interconnections are displayed in
red. Sub-functions are displayed either with a red, dark
blue or green background.

In the beginning of this second update cycle, every lo-
cally stored readout has to be adapted to a predefined pack-
age format and subsequently combined with all the other
diagnostic readout packages. This action results in a large
package that contains all readouts of the previous update
cycle. In addition the occurrence of each package should
be tracked, allowing some diagnostic interface readouts to
be missing. In the final step both the package and the track-
ing results can be stored on-chip and be later forwarded to
an external logging database.

Secondly, for the sake of monitoring certain crucial di-
agnostic readouts, specific interface readout ports have to
be tapped by a sub-function that is monitoring the system.
This monitor determines, if a failsafe action has to be per-
formed. Those readout informations need to be requested
more than once per update cycle to ensure system safety.

By utilizing the previously presented modular system ar-
chitecture, the described functionality can be divided into
multiple sub-functions (also see Fig. 2). The specific tasks
and the implementation of those sub-functions are pre-
sented in the following section.

Finally to unlock the full potential of the underlying fun-
damental architecture (CMI), most of these mentioned sub-
functions can be comprised of multiple CMI modules. The

idea is, to increase the changeability and testability of the
system even more by utilizing rather basic modules. An
example for this would be a generic multiplexer module.
As a result, these modules can be even more useful, as they
are suitable to be added to a completely different design
environment.

IMPLEMENTATION

As stated before, the System Survey and Diagnostic
Reader can be divided into several sub-functions. The tasks
and implementation of these sub-functions are described
in the following. Note that this design is primarily com-
posed of five sub-functions, while the Timer and the Read-
out Storage are necessary external functionalities.

Timer

The Timer creates a one clock-cycle long trigger ev-
ery predefined update cycle. The update cycle time corre-
sponds to the rate in which diagnostic informations will be
requested from the external chips and sensors. In the BLM
injector electronics the Timer is triggered by a machine
synchronisation timing event. This trigger called upd is the
base timing event for nearly all of the other sub-functions.

Sequence Generator

Figure 3: The Sequence Generator sub-function. CMI in-
terconnections and basic CMI modules are displayed in
red.

One Sequence Generator is needed for every diagnos-
tic interface. The Sequence Generator (shown in Fig. 3)
runs through a predefined list of read requests and forwards
them to its corresponding diagnostic interface. The start
of a request sequence is triggered by an upd event and af-
ter that it follows a predefined sequence until every request
is send out and accepted by the diagnostic interface mod-
ule. Meanwhile any new upd event is disregarded. This
is a necessity to always ensure a complete readout of all
requested diagnostic informations. In case this sequence
takes longer than one update cycle, these interface readouts

Proceedings of IBIC2012, Tsukuba, Japan TUPA29

Data Acquisition Techniques

ISBN 978-3-95450-119-9

411 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)



are only updated every other update cycle. This is the rea-
son why later on tracking of interface packages becomes
necessary. It is to accommodate these kinds of slow read-
able diagnostic interfaces. In addition a second sequence
generator can be incorporated to prepare requests that are
needed for the System Self-Monitoring sub-function. This
second sequence generator has to run on a much faster local
timer.

The sequence generator sub-function consists either only
of a module called seq generator or of two such mod-
ules, a priority mux and a local timer called loc timer. The
seq generator modules themselves are implemented using
either a look-up table or a ROM storing the read request
sequence. A local timer and the second sequence genera-
tor are necessary to request those diagnostic informations
more often during the update cycle, that are relevant for the
System Self-Monitoring sub-function.

Diagnostic Interface

The diagnostic interface mainly incorporates the neces-
sary protocol to communicate with an external chip or sen-
sor. It consists of up to three different modular intercon-
nects. The necessary ones are the read-request (rd req)
and readout (readout) CMI ports, which are connected to
the sequence generator sub-function on one side and to
the storing and packaging sub-function on the other side.
In addition certain chips incorporate local registers or an
EEMEM that can be written from a connected FPGA.
Therefore those diagnostic interfaces possess also a write-
request (wr req) CMI port.

The implementation of the Diagnostic Interface consists
of one module, that incorporates primarily a digital control.
This control performs the necessary protocol to communi-
cate with the external chip or sensor. It only processes one
request at a time. Apart from this, there is no additional
processing happening inside this module.

Storing and Packaging

For every diagnostic interface a Storing and Packing sub-
function (shown in Fig. 4) is needed. In the beginning of
every update cycle it waits for the first occurrence of every
requested diagnostic information. It recognizes the differ-
ent readouts by checking the addr label. In case that there
are multiple occurrences of the same information, the addi-
tional ones are discarded. Those additional data points are
vital for the System Self-Monitoring and are therefore pro-
cessed only by that sub-function. If updates for all requests
are present at the end of the cycle, they are locally stored
with the begin of the following update cycle. During the
second update cycle all of these information are format-
ted into a predefined package format and then forwarded
to the next sub-function. This general package format is
necessary to be able to combine interface packages from
different interfaces later on in the Combining and Tracking
sub-function.

Figure 4: The Storing and Packaging sub-function. CMI
interconnections and basic CMI modules are displayed in
red.

The Storing and Packaging sub-function consists of up
to four different modules. If there is more than one type of
data incoming (recognisable by the addr label), filter mod-
ules are used to sort each of them out individually. After-
wards they are pre-stored in the delayed storage module.
The local storage implemented in these modules only gets
updated with the begin of the following update cycle, if
all modules have received an updated in the current one.
After that, all of these stored readouts are forwarded to
the slice and tag module, that gives each of them a header
consisting of their addr label and a corresponding inter-
face number. Furthermore it might slice the actual data
part into multiple ones depending on the package format.
Afterwards all the packaged readouts of one interface are
combined together by a priority mux.

Combining and Tracking

In the Combining and Tracking sub-function (shown in
Fig. 5) all incoming interface packages are combined and
over the course of the whole update cycle every occurrence
of such a package is tracked in a so called scoreboard. This
is necessary, as some of the interface packages might not
have been getting an update in the previous update cycle.

The combination of all interface packages is done by a
priority mux. The final package comprised of all readouts
from all connected chips and sensors is forwarded to the
readout storage and in parallel looped through the score-
board, that is tracking the occurrence of interface packages.
The tracking result is then also forwarded to the readout
storage.

TUPA29 Proceedings of IBIC2012, Tsukuba, Japan

ISBN 978-3-95450-119-9

412C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

Data Acquisition Techniques



Figure 5: The Combining and Tracking sub-function. CMI
interconnections and basic CMI modules are displayed in
red.

Readout Storage
The complete package and the scoreboard can be stored

locally in an SRAM and be read out from another process
to be forwarded to a database for logging. The content of
this storage is updated every update cycle with the recent
package content and the corresponding scoreboard. This
happens two update cycles after the initial request for the
diagnostic informations, which defines the latency of the
Diagnostic Reader.

System Self-Monitoring

Figure 6: The System Self-Monitoring sub-function. CMI
interconnections and basic CMI modules are displayed in
red.

In order to get the ability to react on critical failures in-
side the system, the readout of any relevant diagnostic in-
terface needs to be tapped by the System Self-Monitoring
sub-function (shown in Fig. 6). Relevant informations are
then filtered out of the complete readout stream and com-
pared with predefined thresholds. In case of a critical fail-
ure, an action is performed according to its severity level.
In order to receive additional readouts of the same type dur-
ing one update cycle, additional requests for this specific
diagnostic information have to be issued by the Sequence
Generator.

The implementation of the System Self-Monitoring sub-
function consists of two main CMI modules. The filter
module screens the readout stream for relevant diagnostic
informations and forwards them to the corresponding fail-
safe module. That module compares the value with a given
threshold and performs an appropriate reaction.

SUMMARY
A System Survey and Diagnostic Reader has been

shown, that is capable of adapting to many different en-
vironments. To realize this capability, a fundamental archi-
tecture has been utilized called CMI. Together with a strict
functional model it leads to a design, that is in compliance
with multiple quality characteristics. This in turn leads to
an overall increase in system dependability.

Furthermore the capabilities of the Diagnostic Reader in
combination with the System Self-Monitoring sub-function
actually results in a System Survey mechanic, as any diag-
nostic readout can be used directly on-chip for any desired
functionality.

REFERENCES
[1] Christos Zamantzas, Marcel Alsdorf, Bernd Dehning,

Stephen Jackson, Maciej Kwiatkowski, William Vigano, “Ar-
chitecture of the System for Beam Loss Monitoring and Mea-
surements under Development for the Injector Complex at
CERN”, TUPA09, IBIC12 Tsukuba, Japan, Oct 1-4, 2012

[2] ISO/IEC FDIS 25010:2010(E), Systems and software engi-
neering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality, 2010

Proceedings of IBIC2012, Tsukuba, Japan TUPA29

Data Acquisition Techniques

ISBN 978-3-95450-119-9

413 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)


