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Abstract 
For the storage ring orbit feedback control, the inversed 

SVD (Singular Value Decomposition) method is normally 
working under stabilized orbit situation, but less effective 
at relatively large orbit fluctuation. To overcome such 
numerical drawback, we investigated the alternative 
feedback control based on the solution tracking algorithm. 
Using our novel STIC (Synthesized Topological Inverse 
Computation), we simulated the formation of residual 
tune orbit under the closed orbit dynamics response 
matrix, measurable relationship between BPM-data 
readout and corrector-MPS setting. By placing empirical 
evidence of beam based alignment measurement, we 
achieved remarkable numerical fidelity on our STIC 
feedback algorithm, especially ascribing the topological 
importance of inverse response matrix computation. We 
demonstrated the STIC-inherent triggering behaviour and 
adaptive pattern-notched feedback stability.  
 

INTRODUCTION 
 
 Practically useful for SOFB (slow orbit feedback) 

with assistance of FOFB (fast orbit feedback), the 
inversed SVD manipulation [1] is not fully acceptable 
because a type of consecutive instability noise irreversibly 
accumulates in the beam trajectory deviation. On the 
other hand, a novel numerical algorithm – emerging from 
a topological math approach – can lead to numerical self-
consistency and solution tracking, dramatically 
suppressing ill-posed instability problems associated with 
numerical truncation residuals. This approach, known as a 
singularity regularization method, makes it feasible to 
compute a feature-invariant inverse matrix and system-
matched de-noising filter. For deep investigation of the 
closed orbit feedback control, we applied our novel recipe 
of inverse computation, namely STIC(Synthesized 
Topological Inverse Computation) [2]. Fundamentally, 
this Orbit-STIC feedback is similar to the numerical 
computation of the inner origin function ascribing a type 
of complex systems. In our other study [2], we described 
the singularity inhibitor algorithm with essential 
topological nature engaged in the symplectic 
transformation (e.g. S-matrix, satisfying A3=SA1 with 
S2=-I). Because this inverse math algorithm deals with the 
phase-component feature, commonly required is the 
complete phase-space relationship, e.g. the horizontal and 
vertical coupling term in the closed orbit response matrix. 

Even though LOCO (linear optics closed orbit) 
configurations are so complicated, entire physics of beam 
dynamics feature can be extracted from the measured 
response matrix. In this study, we introduced the PLS-II 
response matrix, even not so much matured since 
upgrading commission year 2012. [3] Proper matrix 
refinement can be made both numerically and empirically, 
according to our self-consistent manner of filtering out 
the uncertainty of measurement errors escaping from 
beam dynamics constraints. We are deeply investigating 
our advanced feedback algorithm, Orbit-STIC, practically 
in collaboration with world-wide accelerator community.  

 

NUMERICAL PROCEDURES 
 
As depicted in Fig. 1, the closed orbit feedback 

algorithm can be expressed with the following equations:  
ࡹࡼ࡮࢞∆  = ࢏࢞∆ − ࢕࢞∆ = ࢏ࢍ∆)	܀  (1)         (࢕ࢍ∆	−

തതതതࢍ∆  = ࢕ࢍ∆ ଙ෪࢞∆	૚ି܀	–	࢏ࢍ∆)	+ )                    (2) 
തതതത࢞∆  = ࢕ࢍ∆	܀ =  ૙                         (3)࢞∆	૚ି܀	܀

തതതതࢍ∆  = തതതത࢞∆	૚ି܀ 	+ (۷ − ଙ෪࢞∆	૚ି܀	(܀૚ି܀            (4) 

തതതതതܛ܏∆  = ઻ܛ܃(૙)		∆࢞തതതത 	+ ଙ෪࢞∆	(઻)ܛ܃ 		                      (5) 

(઻)܋ܑܜܛ܃  	 = ૚ି܋ܑܜܛ܀] ܚି[܀ ૚൫۷ − ઻	ି܋ܑܜܛ܀૚ ૚ି܋ܑܜܛ܀	൯܀
          (6) 

(઻)܌ܞܛ܃  	 = ൫۷ − ઻	ି܌ܞܛ܀૚ ૚ି܌ܞܛ܀	൯܀
                        (7) 

തതതതതതത܌ܞܛ܏∆  = 	હ	܌ܞܛ܃(૙) ࢖࢞∆		 + (હ)܌ܞܛ܃  																																				࢖࢞∆	
      = ቀ(૚ + હ)۷ − હ	ି܌ܞܛ܀૚ ૚ି܌ܞܛ܀	ቁ܀  (8)        ࢖࢞∆	

 
Eqs (1)-(4), include the basic recursive formula for the 

feedback control. Eqs (5)-(7), are the modified formalism 
based on Eq(4). This is efficient and convenient way of 
stabilizing the iteration process. For the STIC feedback in 
Fig. 2, as ઻ → ૚, it is proper to get the stabilized BPM-
solution (xo). In contrast, for the SVD method, as	 હ → ૚, 
the feedback speed is retarded and eventually 
extinguished. (Refer to Table 1.) Typically, when the 
particular orbit solution is given as xp, the corrector-
MPS setting is simply computed according to Eq (8). Two  ___________________________________________  
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numerical approaches, STIC and SVD, are significantly 
different: (i) STIC algorithm works at the solution 
tracking mode with valid xo-seed value in Fig. 1. If the 
initial xo-setting is largely deviated from the real orbit 
situation, prompt feedback is jeopardized. (ii) SVD 
algorithm computes go directly from BPM-readout 
(current orbit). Even uncertainty of xp is not totally 
rejected under -parameter adjustable feedback speed. 
However, under the SVD feedback control, the orbit will 
be excursive without smart feedback such as STIC 
solution tracking. More specification will be described 
later with our numerical simulation results in Fig. 3, 
relevant to quantitative basis in Fig. 4 and Table 1. 

  

 
Figure 1: Algorithm diagram of STIC feedback process. 
The inverse process (܀	ି ૚) is represented as the equivalent 
inverse algebra using two conjugate operators (܋ܑܜܛ܃(૙) , (઻)܋ܑܜܛ܃ 	) 
in Eqs (5)-(6). The solution tracking operator (܋ܑܜܛ܃(૙) 	) keeps 
the solution orbit stabilized, while the filtering operator 
(઻)܋ܑܜܛ܃) 	) plays a nullifying role against the amplification of 
noise components along repeated feedback loop. 
 

RESULT AND DISCUSSION 
 

As shown in Fig. 2, numerical simulation results 
indicate that the residual tune orbit - corresponding to xo 
in Fig 1 - exists in real beam orbit, as well as numerical 
final solution converged via numerical iteration. This 
residual tune orbit can be taken as an average of statistical 
fluctuation as numerically simulated. Its amplitude was 
compared to the so-called reference orbit, empirically 
measured through BBA(Beam Based Alignment) method 
[4], as plotted in Fig. 2 (b). Numerical counterpart is 
apparently coincident to the empirical pattern, in case that 
the numerical inversion (R-1) is reasonably close to our 
STIC result. At least, it is a good indicator to recognize 
the plausible betatron oscillation - the lattice tune 
arrangement coupled with quadrupole magnet to BPM 
position involving beam based offset errors. Normally, 
the betatron oscillation is damping slowly after every top-
up injections, and is fluctuating within the bounded 
stability in beam dynamic aperture. 

 

Our numerical simulation results, illustrated in Fig. 3, 
are deserved to develop the hybrid algorithm connecting 
STIC and SVD. Within numerical simulation, it is 
possible to trigger the effect of STIC solution feedback. 
When triggered, this solution is surely valid. The resultant 
STIC xo-solution is stabilized better compared to the 
SVD-case. This is a case of triggering at the extremely 
stabilized orbit – statistically reachable instantaneously. 

 

 
Figure 2: (a) Simulated residual tune orbit, statistical 
average of random-number generated orbit fluctuation. 
Horizontal/vertical tune orbit indicates the operational 
status (x=15.28, y=9.18) of PLS-II. (b) Empirical 
evidence is observed from typical beam based offset 
measurement, the BPM arrangement data presumed as   ∆(܎܍ܚ)ܗ࢞ = (۷ −  .(܍ܖܝܜ)ܗܠ∆	(	૚ି܀܀

 

 
Figure 3: Comparison between STIC and SVD feedback 
simulation. In the case (a2), the STIC solution tracking is 
performed when the seed setting (x0 in Fig. 1) is taken 
from other feedback orbits, STIC-(a1) or SVD-(b1). 
Appropriate parameter can control the triggering 
threshold, associated with statistically distributed orbit 
stability (blue color). Up to complete orbit tracking 
situation, the extremely stabilized orbit can be established 
via such an adaptive triggering operation. 
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Whenever STIC process confirms the stabilized BPM-
readout orbit at good confidence, we can put appropriate 
setting values for corrector magnets with sufficient safety. 
In Fig. 3 (b), eventually xo-solution can be obtained at 
the minimal deviation - indicating submicron stability 
desirable. In this way, it is possible to reach the maximum 
stability with safety and quickness, and meanwhile orbital 
drift problem will be removed.  

 
In Fig. 4, showing the feature of inverse matrices, it is 

clearly manifested how STIC feedback works differently 
from SVD feedback process. In case of SVD, ܌ܞܛ܃(૙) 	 is 
only effective, but ܋ܑܜܛ܃(૚) 	actually vanishes as indicated, i.e. ‖ۿ‖ = ૙ in Table 1. This belongs to a single pattern style 
of feedback kernel. In contrast, STIC is a homology case - 
combing doublet patterns (܋ܑܜܛ܃(૙) 	 and ܋ܑܜܛ܃(૚) 	) into one matrix. 
With such distinctiveness, this STIC process is more 
potential than SVD for theoretical computation and 
modelling. As we computed the residual tune orbit in Fig. 
2, we can achieve a great numerical confidence regardless 
of noise fluctuation. Indeed, the entire details of closed 
beam orbit can be evaluated from the measured response 
matrix, e.g. a theme of accelerator simulation works. Of 
course, as we promised, our STIC process will be 
prominent for a practical implementation of on-tracking 
solution, especially fast feedback process competing 
FOFB system. If so, our feedback system may have a 
great benefit to establish top-up operation mode safely 
and quickly – optimizing a fast betatron oscillation 
damping. Also, we believe, this smart and effective 
algorithm can be interfaced with RF tune frequency 
adjustment. Subsequent feedback under noise statistics 
can be traced with sensitively evaluating the disparity 
covariance (maximum entropy) across orbital instability 
situation, as pointed out in other study [2].     

 

Table 1: Characteristics of Inverse Matrix 

Inverse 
Operator   ିۯ૚ 

Norm of operator algebra: ‖ۿ‖								ฮۿ૛ − ۯۿ‖								ฮۿ − 				‖ۯ ฮ۾૛ − ܚି܀ ฮ۾ ૚ ି܋ܑܜܛ܀૚
(૙)܋ܑܜܛ܃ 
(૚)܋ܑܜܛ܃ 
 

 1.0       0.23        0.051       23.27  

 1.0       8e-7        0.004       4e-7 

1.23      0.30        0.002       0.25 

૚ି܌ܞܛ܀ 0.35         1.0        0.27      0.54
(૙)܌ܞܛ܃ 
(૙.૞)܌ܞܛ܃		 

 

(૚)܌ܞܛ܃		   
pinv(R) 
@matlab  

 1.0       2e-14       0.018       2e-14 

 1.0       2e-14       0.018       2e-14 

0.5       0.25        0.5         0.25 

0 ( meaningless, featureless)  

1.0       7e-13       2e-14       1e-12 

  

 
Figure 4: Color-map representation for the storage ring 
orbit response matrix, [RHH,RHV; RVH,RVV]. For ∆࢏࢞ =  system, [Q,R; R-1,P] consists of complete ࢏ࢍ∆	܀
Hilbert four-space set with R (forward), R-1 (inverse), 
Q=RR-1 (x-space projection) and P=R-1R (g-space 
projection). With |intensity|0.65 adjusted image, red/blue 
color indicates positively/negatively valued. Refer to 
numerical feature characteristics in Table 1. 
 

Our simulated numerical distinctiveness is so 
remarkable and thinkable for practical utility of feedback 
system with modern computers of massive parallel 
architecture. Our STIC result – phase retrieval solution - 
is basically dependent on math approach, which is being 
revealed as a category of Bayesian statistics and 
maximum entropy theory. Like a hologram, STIC matrix 
itself possesses the phase-retrieval feature and its tracking 
(lock-in) stability. Inversed SVD matrix is improper 
physically, losing such crucial topology-invariant features. 
A new math approach is emerging nowadays to think 
about a new instrumentation and challenging.  
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