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Abstract 
 A hardware system that acquires and stores a large buffer 

of bunch-by-bunch 16-bit data has been realized. A high 

resolution (up to 16-bit) analog-to-digital converter 

(ADC), or bank of ADCs, samples the analog signal at the 

bunch frequency. The digitized data is fed into a Field 

Programmable Gate Array (FPGA), which contains an 

interface to a bank of Double Data Rate SDRAM (DDR) 

type memory. With appropriate data bus widths, the 

FPGA bursts the ADC data into the DDR fast enough to 

keep up with the bunch-by-bunch ADC data continuously. 

The realized system demonstrates continuous data transfer 

at a rate of 1GByte/sec, or 16-bit data at 500MHz, into a 

64MByte DDR. This paper discusses the implementation 

of this system and the future of this architecture for 

bunch-by-bunch diagnostics. 

INTRODUCTION 

For many years, beam motion in particle accelerators 

has been understood well enough to design bunch-by-

bunch feedback systems capable of stabilizing the beam. 

Until recently, these systems lacked the diagnostic 

capability to monitor the RMS motion of each bunch and 

store it continuously for an extended period. This 

information can be used to compute the various coupled 

bunch modes of oscillation. Monitoring the strength of 

each mode over time can provide valuable insight that 

could ultimately be used to better stabilize the beam. High 

bit resolution is desirable to increase the accuracy of the 

modal analysis. 

One method of capturing long records of high 

resolution bunch-by-bunch data is digitizing the beam 

signal with one or several high resolution ADCs, sending 

the data to a high performance FPGA to pack into a buffer 

in a large DDR or bank of DDRs (see Figure 1). Only 

recently has the combination of ADC/FPGA/DDR 

technologies achieved the performance required to make 

such a measurement on an accelerator beam with a bunch 

rate of 500MHz or greater, such as at the Advanced Light 

Source (ALS). 

A new transverse feedback system (TFB) is under 

development at the ALS that includes hardware capable 

of performing large bunch-by-bunch captures [1]. We 

have developed firmware for the FPGA that demonstrates 

the ability to capture up to 16-bit data at 500MHz and 

store it in a 64MB DDR, giving us the ability to capture 

over 15ms of continuous bunch-by-bunch data. This paper 

describes the hardware requirements and firmware 

options to achieve the measurement, as well as an 

example targeted for the ALS TFB and the NSLS-II RF 

BPM, and the future of this technology for bunch-by-

bunch measurements. 

 
Figure 1: ADC-FPGA-DDR model for bunch-by-bunch 

data acquisition. 

HARDWARE REQUIREMENTS 

To capture bunch-by-bunch data, the effective sampling 

rate of the ADC circuit must match the maximum bunch 

rate of the accelerator. This can be accomplished by using 

a single ADC if the sampling rate and bit resolution are 

sufficient, or by time-interleaving samples from multiple 

ADCs. Ideally, a single ADC is used to eliminate sources 

of error caused by multi-ADC sampling, such as phase 

and amplitude mismatch and thermal drift. The ALS TFB 

system requires 12-bit resolution and 500Msps sampling, 

but at the time no single ADC was available that met 

those requirements. Instead, two 12-bit ADCs are used, 

each sampling at 250Msps and clocked 180 degrees out of 

phase to achieve an effective sampling rate of 500Msps.  

The FPGA must be able to clock the related logic fast 

enough to process all the ADC data continuously. In a 

single ADC system, the FPGA must be clocked at the full 

bunch rate, unless the ADC has multiple parallel output 

data buses. In a multi-output ADC or multi-ADC system, 

the FPGA clock rate can be reduced since the data can be 

processed in parallel, although this uses additional logic 

resources. In practice, it is recommended to clock the 

FPGA well below its specified maximum clock rate since 

the amount of logic used in the FPGA is large enough that 

routing at such high frequencies becomes problematic or 

impossible. The ALS TFB uses a Xilinx Virtex-5 LX50 

speed grade -1 FPGA clocked at 250MHz to match the 

ADC sampling rate, well below the FPGA maximum 

output clock frequency of 450MHz [2]. 

The FPGA provides the clock and control interface to 

the DDR chips, which all must be clocked synchronously 

and fast enough to transfer the ADC data continuously. At 

the basic level, the DDR theoretical bandwidth can be 

calculated by multiplying the maximum allowable DDR 

clock rate by 2, then by the data bus width. For the ALS 

TFB, which uses a DDR2 with maximum clock rate of 

200MHz [3], the theoretical bandwidth is 200MHz × 2 × 
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4 Bytes = 1.6 GByte/s. The ADC data is 12-bits wide, but 

since it is simpler to transfer data to the DDR without 

crossing byte boundaries, the ADC values are packaged as 

2 Bytes, so the required DDR transfer rate is 250Msps × 2 

× 2 Bytes = 1.0 GByte/s. Although the theoretical 

bandwidth appears to be sufficient to meet the 

requirement, the firmware implementation impacts the 

maximum achievable continuous transfer rate. This will 

be explored in greater detail in the following sections.  

FIRMWARE 

There are many ways to implement firmware that 

transfers data from the ADC to DDR. On one extreme, an 

entirely custom logic solution can be developed, which 

provides the most flexibility to optimize the design for the 

specific application. On the other extreme, it is also 

possible to use design examples and configurable cores 

from the FPGA manufacturer with minimal 

customizations to field a less flexible solution more 

quickly.  

For the ALS TFB system, the Xilinx Multi-Port 

Memory Controller core (MPMC) was selected as the 

DDR interface. For the Avnet Xilinx Virtex-5 LX50 

evaluation board used in the ALS TFB system, the default 

design includes the MPMC. The MPMC can be 

configured to use up to 8 separate ports, which is 

important if the DDR is connected to multiple interfaces. 

All ports are arbitrated internally in the MPMC using one 

of the standard arbitration schemes, or a user-defined 

scheme. 

The MPMC supports several types of interface ports. 

The most basic and high performance of these is the 

Native Port Interface (NPI), which was chosen to stream 

the ADC data to the DDR in the ALS TFB design. In 

addition, the MPMC has a PLB port that the Microblaze 

embedded processor uses to access OS and program code 

stored in the DDR. Figure 2 shows the MPMC 

connections in the ALS TFB system. 

 

 
Figure 2: Multi-Port Memory Controller connections in 

the ALS TFB system. 

 

Native Port Interface (NPI) 

My NPI Burst Controller Core (My NPI core) is a 

custom logic core that transfers the ADC data to the 

MPMC (Figure 3). One 12-bit value from each ADC is 

packed into a 32-bit word and clocked into the burst FIFO 

in My NPI core continuously at 250MHz. Once the burst 

FIFO contains enough data for a 64-word burst, the 

control logic in My NPI core enables a 64-word transfer 

to the write FIFO in the MPMC NPI port at the DDR 

clock rate of 200 MHz. When the transfer is complete, 

My NPI core control logic requests a burst write from the 

NPI port to DDR. 

The burst FIFO provides a mechanism for the ADC 

data to cross clock domains from the ALS RF clock 

domain (fRF/2 = 250MHz) to the DDR clock domain (LO 

100MHz × 2 = 200MHz) as well as some amount of 

buffering to allow continuous ADC data acquisition in 

case the NPI burst request is held off by the MPMC 

arbiter. The burst FIFO can be as deep as the resources 

available in the FPGA allow. The NPI port write FIFO is 

required for NPI burst transfers to DDR. 

 

 
Figure 3: My NPI Burst Controller core architecture. 

 

The maximum continuous transfer rate via an NPI port 

in burst mode depends on the DDR clock rate, the DDR 

data width, and the NPI port data width. For the ALS TFB 

using the maximum DDR clock rate (200MHz), DDR 

data width fixed in hardware (32 bits), maximum NPI 

data width (64 bits), and maximum NPI burst size (64 

words), the maximum continuous transfer rate is 1.138 

GByte/s [4] or 225ns per burst.  

MPMC Arbitration 

For a single port MPMC system, the maximum NPI 

burst transfer rate would be sufficient to meet the 1 

GByte/s rate required to transfer the ADC data. However, 

in a multi-port system, the MPMC arbitration scheme 

must balance the performance needs of all ports to avoid 

starving any one port and potentially losing critical data. 

There are several standard arbitration schemes and a 

configurable custom scheme available in the MPMC. For 

the ALS TFB system, we base-lined the performance of 

two schemes: round-robin and custom with the NPI port 

configured to always have top priority. For each case, the 

Microblaze ran a simple standalone program out of FPGA 

Block RAM. The code requests single reads of DDR data 

in a tight loop to approximate a program executing out of 

DDR. The code for this program is shown below: 

 
#include "xio.h" 

 

int main (void)  
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{ 

    Xuint32 data; 

    Xuint32 addr; 

 

    addr = 0x8F000000; 

    while (1) { 

        data = XIo_In32(addr); 

    } 

} 

 

The default MPMC arbitration scheme is round-robin. 

In this scheme, each port is sequentially given top priority 

(i.e. port 1, 2, 3, 1, 2, 3, etc.). For the ALS TFB with a 2 

port MPMC, this results in the top priority alternating 

between the 2 ports (port 1, 2, 1, 2, etc.). Simulations 

using this scheme indicate that the NPI burst interface 

does not get enough service to sustain continuous transfer 

of the ADC data because alternating transactions limited 

the continuous NPI burst throughput to 256 Bytes per 285 

ns (Figure 4A), or 0.90 GByte/s.  

Next, the MPMC arbitration scheme was modified so 

that the NPI port always has priority. This means that the 

NPI port is serviced as soon as possible after a transaction 

request, and the PLB port is only serviced if there is no 

request pending from the NPI port. This scenario was also 

simulated, and a typical pattern of transactions for this 

case is shown in Figure 4B. PLB port transactions only 

occur about every 2 NPI bursts so that the NPI interface 

can transfer 256 * 2 = 512 Bytes every 510 ns, or just 

over 1 GByte/s.  

The design was built and tested on the ALS TFB 

hardware and ran continuously for several hours without 

corrupting the ADC data capture buffer. This was verified 

both by monitoring a latched version of the burst FIFO 

full signal and by reading out the data in the buffer after a 

stop capture trigger. A slightly modified version of My 

NPI core (64-bit input port) was built and successfully 

tested on the Xilinx ML507 evaluation board for potential 

use in the NSLS-II RF BPM system [5]. 

This project is now ready to be integrated with Ethernet 

software that provides remote access to the system. On a 

shared network, the Ethernet software must handle 

variable rates of traffic coming from the network, the 

software load is usually nondeterministic, and the 

behavior can be difficult to simulate or even test in 

hardware.  

For a complex system with nondeterministic Ethernet 

software, the software must, at a minimum, handle the 

expected payload required for system operation. In most 

systems, this payload is well known and worst-case 

scenarios can be simulated and tested on an isolated 

network. To make the system more robust against traffic 

on a shared network, the software can be optimized to 

ignore irrelevant traffic and minimize the burden on the 

DDR. This challenge is not unique to Ethernet interfaces; 

any nondeterministic external interface that requires 

software access to the DDR will cause the same behavior.  

FUTURE CONSIDERATIONS 

The MPMC core is a flexible and capable solution for 

FPGA embedded processor systems demanding multi-

tasking capability from their DDR SDRAM banks. The 

ALS TFB design is an example of how the MPMC can be 

configured to efficiently support two interfaces with very 

different requirements. The MPMC arbitration scheme 

used is one of simplest; in the custom scheme, time slot 

prioritization can be used to precisely tune the arbitration 

to the specific needs of the application and maximize the 

DDR bandwidth efficiency. Also, the depth of the burst 

FIFO can be adjusted to compensate for longer periods of 

port starvation due to the configuration of the arbitration 

scheme. For more complex designs requiring many 

MPMC ports, the arbitration scheme is critical to meet the 

demands of all your port interfaces. 

Many of the Xilinx FPGA evaluation boards now use a 

DIMM interface to DDR SDRAM to support much larger 

depths of memory, allowing easy memory upgrade by 

replacing only the DIMM module, not the FPGA board. 

FPGA and DDR clock rates continue to climb and DDR 

transfer bandwidths increase proportionally, limited only 

by the maximum burst size and the data bus bandwidth. 

For example, the Xilinx ML605 Combines a Virtex-6 

FPGA with a 512MB DDR3 SO-DIMM 64 bits wide that 

can be clocked at 533MHz, which could support a 

theoretical transfer rate of 8.5 GByte/s, more than 5 times 

greater than the ALS TFB system. 

Figure 4: Typical DDR transaction timing diagrams for different MPMC arbitration schemes. (A) Round-robin 

arbitration. (B) Custom arbitration with the NPI port always the highest priority. 
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CONCLUSION 

Continuous 16-bit bunch-by-bunch data acquisition at 

500 MHz has been realized on the ALS TFB system. The 

MPMC core provides a fairly flexible interface to the 

DDR that includes multi-port arbitration. The NPI port 

provides the highest performance burst transaction of the 

port types supported by the MPMC. The performance 

requirements for each port must be carefully considered 

and addressed by the arbitration scheme. The future of the 

technologies in use will support ever increasing demands 

on resolution, bandwidth, and buffer length for bunch-by-

bunch data capture. 

ACKNOWLEDGEMENTS 

The authors would like to thank David Robin, Greg 

Portmann, and the rest of the ALS Physics Group for 

supporting and motivating this project. Also, thanks to 

Kurt Vetter and Kiman Ha for informal discussions and 

emails contributing to this effort and for testing the 

firmware on the ML507 evaluation platform. 

REFERENCES 

[1] J. Weber, M. Chin, “ALS FPGA-Based Transverse 

Feedback Electronics”, BIW08, Tahoe City, CA, 

May, 2008.             

<http://accelconf.web.cern.ch/AccelConf/BIW2008/p

apers/tuptpf017.pdf>. 

[2] Xilinx. “Virtex-5 FPGA Data Sheet: DC and 

Switching Characteristics”, DS202 (v5.2), June 25, 

2009, 

<http://www.xilinx.com/support/documentation/data_

sheets/ds202.pdf>. 

[3] Micron. “256Mb: x4, x8, x16 DDR2 SDRAM 

Features”, 256MbDDR2.pdf – Rev. M 7/09 EN, July, 

2009. 

<http://download.micron.com/pdf/datasheets/dram/dd

r2/256MbDDR2.pdf>. 

[4] Xilinx. “Multi-Port Memory Controller (MPMC) 

(v5.04.a)”, DS643, December 2, 2009, 

<http://www.xilinx.com/support/documentation/ip_d

ocumentation/mpmc.pdf>.  

[5] K. Vetter, et al, “NSLS-II RF Beam Position 

Monitor”, these proceedings.  
 

TUPSM112 Proceedings of BIW10, Santa Fe, New Mexico, US

Instrumentation

486


