
CONTINUOUS BUNCH-BY-BUNCH 16-BIT DATA ACQUISITION USING

DDR2 SDRAM CONNECTED TO AN FPGA*

J. Weber, M. Chin, LBNL, Berkeley, CA, U.S.A.

Abstract
 A hardware system that acquires and stores a large buffer

of bunch-by-bunch 16-bit data has been realized. A high

resolution (up to 16-bit) analog-to-digital converter

(ADC), or bank of ADCs, samples the analog signal at the

bunch frequency. The digitized data is fed into a Field

Programmable Gate Array (FPGA), which contains an

interface to a bank of Double Data Rate SDRAM (DDR)

type memory. With appropriate data bus widths, the

FPGA bursts the ADC data into the DDR fast enough to

keep up with the bunch-by-bunch ADC data continuously.

The realized system demonstrates continuous data transfer

at a rate of 1GByte/sec, or 16-bit data at 500MHz, into a

64MByte DDR. This paper discusses the implementation

of this system and the future of this architecture for

bunch-by-bunch diagnostics.

INTRODUCTION

For many years, beam motion in particle accelerators

has been understood well enough to design bunch-by-

bunch feedback systems capable of stabilizing the beam.

Until recently, these systems lacked the diagnostic

capability to monitor the RMS motion of each bunch and

store it continuously for an extended period. This

information can be used to compute the various coupled

bunch modes of oscillation. Monitoring the strength of

each mode over time can provide valuable insight that

could ultimately be used to better stabilize the beam. High

bit resolution is desirable to increase the accuracy of the

modal analysis.

One method of capturing long records of high

resolution bunch-by-bunch data is digitizing the beam

signal with one or several high resolution ADCs, sending

the data to a high performance FPGA to pack into a buffer

in a large DDR or bank of DDRs (see Figure 1). Only

recently has the combination of ADC/FPGA/DDR

technologies achieved the performance required to make

such a measurement on an accelerator beam with a bunch

rate of 500MHz or greater, such as at the Advanced Light

Source (ALS).

A new transverse feedback system (TFB) is under

development at the ALS that includes hardware capable

of performing large bunch-by-bunch captures [1]. We

have developed firmware for the FPGA that demonstrates

the ability to capture up to 16-bit data at 500MHz and

store it in a 64MB DDR, giving us the ability to capture

over 15ms of continuous bunch-by-bunch data. This paper

describes the hardware requirements and firmware

options to achieve the measurement, as well as an

example targeted for the ALS TFB and the NSLS-II RF

BPM, and the future of this technology for bunch-by-

bunch measurements.

Figure 1: ADC-FPGA-DDR model for bunch-by-bunch

data acquisition.

HARDWARE REQUIREMENTS

To capture bunch-by-bunch data, the effective sampling

rate of the ADC circuit must match the maximum bunch

rate of the accelerator. This can be accomplished by using

a single ADC if the sampling rate and bit resolution are

sufficient, or by time-interleaving samples from multiple

ADCs. Ideally, a single ADC is used to eliminate sources

of error caused by multi-ADC sampling, such as phase

and amplitude mismatch and thermal drift. The ALS TFB

system requires 12-bit resolution and 500Msps sampling,

but at the time no single ADC was available that met

those requirements. Instead, two 12-bit ADCs are used,

each sampling at 250Msps and clocked 180 degrees out of

phase to achieve an effective sampling rate of 500Msps.

The FPGA must be able to clock the related logic fast

enough to process all the ADC data continuously. In a

single ADC system, the FPGA must be clocked at the full

bunch rate, unless the ADC has multiple parallel output

data buses. In a multi-output ADC or multi-ADC system,

the FPGA clock rate can be reduced since the data can be

processed in parallel, although this uses additional logic

resources. In practice, it is recommended to clock the

FPGA well below its specified maximum clock rate since

the amount of logic used in the FPGA is large enough that

routing at such high frequencies becomes problematic or

impossible. The ALS TFB uses a Xilinx Virtex-5 LX50

speed grade -1 FPGA clocked at 250MHz to match the

ADC sampling rate, well below the FPGA maximum

output clock frequency of 450MHz [2].

The FPGA provides the clock and control interface to

the DDR chips, which all must be clocked synchronously

and fast enough to transfer the ADC data continuously. At

the basic level, the DDR theoretical bandwidth can be

calculated by multiplying the maximum allowable DDR

clock rate by 2, then by the data bus width. For the ALS

TFB, which uses a DDR2 with maximum clock rate of

200MHz [3], the theoretical bandwidth is 200MHz × 2 ×

* This work was supported by the Director, Office of Science, Office

of Basic Energy Sciences, of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231.

Proceedings of BIW10, Santa Fe, New Mexico, US TUPSM112

Instrumentation

483

4 Bytes = 1.6 GByte/s. The ADC data is 12-bits wide, but

since it is simpler to transfer data to the DDR without

crossing byte boundaries, the ADC values are packaged as

2 Bytes, so the required DDR transfer rate is 250Msps × 2

× 2 Bytes = 1.0 GByte/s. Although the theoretical

bandwidth appears to be sufficient to meet the

requirement, the firmware implementation impacts the

maximum achievable continuous transfer rate. This will

be explored in greater detail in the following sections.

FIRMWARE

There are many ways to implement firmware that

transfers data from the ADC to DDR. On one extreme, an

entirely custom logic solution can be developed, which

provides the most flexibility to optimize the design for the

specific application. On the other extreme, it is also

possible to use design examples and configurable cores

from the FPGA manufacturer with minimal

customizations to field a less flexible solution more

quickly.

For the ALS TFB system, the Xilinx Multi-Port

Memory Controller core (MPMC) was selected as the

DDR interface. For the Avnet Xilinx Virtex-5 LX50

evaluation board used in the ALS TFB system, the default

design includes the MPMC. The MPMC can be

configured to use up to 8 separate ports, which is

important if the DDR is connected to multiple interfaces.

All ports are arbitrated internally in the MPMC using one

of the standard arbitration schemes, or a user-defined

scheme.

The MPMC supports several types of interface ports.

The most basic and high performance of these is the

Native Port Interface (NPI), which was chosen to stream

the ADC data to the DDR in the ALS TFB design. In

addition, the MPMC has a PLB port that the Microblaze

embedded processor uses to access OS and program code

stored in the DDR. Figure 2 shows the MPMC

connections in the ALS TFB system.

Figure 2: Multi-Port Memory Controller connections in

the ALS TFB system.

Native Port Interface (NPI)

My NPI Burst Controller Core (My NPI core) is a

custom logic core that transfers the ADC data to the

MPMC (Figure 3). One 12-bit value from each ADC is

packed into a 32-bit word and clocked into the burst FIFO

in My NPI core continuously at 250MHz. Once the burst

FIFO contains enough data for a 64-word burst, the

control logic in My NPI core enables a 64-word transfer

to the write FIFO in the MPMC NPI port at the DDR

clock rate of 200 MHz. When the transfer is complete,

My NPI core control logic requests a burst write from the

NPI port to DDR.

The burst FIFO provides a mechanism for the ADC

data to cross clock domains from the ALS RF clock

domain (fRF/2 = 250MHz) to the DDR clock domain (LO

100MHz × 2 = 200MHz) as well as some amount of

buffering to allow continuous ADC data acquisition in

case the NPI burst request is held off by the MPMC

arbiter. The burst FIFO can be as deep as the resources

available in the FPGA allow. The NPI port write FIFO is

required for NPI burst transfers to DDR.

Figure 3: My NPI Burst Controller core architecture.

The maximum continuous transfer rate via an NPI port

in burst mode depends on the DDR clock rate, the DDR

data width, and the NPI port data width. For the ALS TFB

using the maximum DDR clock rate (200MHz), DDR

data width fixed in hardware (32 bits), maximum NPI

data width (64 bits), and maximum NPI burst size (64

words), the maximum continuous transfer rate is 1.138

GByte/s [4] or 225ns per burst.

MPMC Arbitration

For a single port MPMC system, the maximum NPI

burst transfer rate would be sufficient to meet the 1

GByte/s rate required to transfer the ADC data. However,

in a multi-port system, the MPMC arbitration scheme

must balance the performance needs of all ports to avoid

starving any one port and potentially losing critical data.

There are several standard arbitration schemes and a

configurable custom scheme available in the MPMC. For

the ALS TFB system, we base-lined the performance of

two schemes: round-robin and custom with the NPI port

configured to always have top priority. For each case, the

Microblaze ran a simple standalone program out of FPGA

Block RAM. The code requests single reads of DDR data

in a tight loop to approximate a program executing out of

DDR. The code for this program is shown below:

#include "xio.h"

int main (void)

TUPSM112 Proceedings of BIW10, Santa Fe, New Mexico, US

Instrumentation

484

{

 Xuint32 data;

 Xuint32 addr;

 addr = 0x8F000000;

 while (1) {

 data = XIo_In32(addr);

 }

}

The default MPMC arbitration scheme is round-robin.

In this scheme, each port is sequentially given top priority

(i.e. port 1, 2, 3, 1, 2, 3, etc.). For the ALS TFB with a 2

port MPMC, this results in the top priority alternating

between the 2 ports (port 1, 2, 1, 2, etc.). Simulations

using this scheme indicate that the NPI burst interface

does not get enough service to sustain continuous transfer

of the ADC data because alternating transactions limited

the continuous NPI burst throughput to 256 Bytes per 285

ns (Figure 4A), or 0.90 GByte/s.

Next, the MPMC arbitration scheme was modified so

that the NPI port always has priority. This means that the

NPI port is serviced as soon as possible after a transaction

request, and the PLB port is only serviced if there is no

request pending from the NPI port. This scenario was also

simulated, and a typical pattern of transactions for this

case is shown in Figure 4B. PLB port transactions only

occur about every 2 NPI bursts so that the NPI interface

can transfer 256 * 2 = 512 Bytes every 510 ns, or just

over 1 GByte/s.

The design was built and tested on the ALS TFB

hardware and ran continuously for several hours without

corrupting the ADC data capture buffer. This was verified

both by monitoring a latched version of the burst FIFO

full signal and by reading out the data in the buffer after a

stop capture trigger. A slightly modified version of My

NPI core (64-bit input port) was built and successfully

tested on the Xilinx ML507 evaluation board for potential

use in the NSLS-II RF BPM system [5].

This project is now ready to be integrated with Ethernet

software that provides remote access to the system. On a

shared network, the Ethernet software must handle

variable rates of traffic coming from the network, the

software load is usually nondeterministic, and the

behavior can be difficult to simulate or even test in

hardware.

For a complex system with nondeterministic Ethernet

software, the software must, at a minimum, handle the

expected payload required for system operation. In most

systems, this payload is well known and worst-case

scenarios can be simulated and tested on an isolated

network. To make the system more robust against traffic

on a shared network, the software can be optimized to

ignore irrelevant traffic and minimize the burden on the

DDR. This challenge is not unique to Ethernet interfaces;

any nondeterministic external interface that requires

software access to the DDR will cause the same behavior.

FUTURE CONSIDERATIONS

The MPMC core is a flexible and capable solution for

FPGA embedded processor systems demanding multi-

tasking capability from their DDR SDRAM banks. The

ALS TFB design is an example of how the MPMC can be

configured to efficiently support two interfaces with very

different requirements. The MPMC arbitration scheme

used is one of simplest; in the custom scheme, time slot

prioritization can be used to precisely tune the arbitration

to the specific needs of the application and maximize the

DDR bandwidth efficiency. Also, the depth of the burst

FIFO can be adjusted to compensate for longer periods of

port starvation due to the configuration of the arbitration

scheme. For more complex designs requiring many

MPMC ports, the arbitration scheme is critical to meet the

demands of all your port interfaces.

Many of the Xilinx FPGA evaluation boards now use a

DIMM interface to DDR SDRAM to support much larger

depths of memory, allowing easy memory upgrade by

replacing only the DIMM module, not the FPGA board.

FPGA and DDR clock rates continue to climb and DDR

transfer bandwidths increase proportionally, limited only

by the maximum burst size and the data bus bandwidth.

For example, the Xilinx ML605 Combines a Virtex-6

FPGA with a 512MB DDR3 SO-DIMM 64 bits wide that

can be clocked at 533MHz, which could support a

theoretical transfer rate of 8.5 GByte/s, more than 5 times

greater than the ALS TFB system.

Figure 4: Typical DDR transaction timing diagrams for different MPMC arbitration schemes. (A) Round-robin

arbitration. (B) Custom arbitration with the NPI port always the highest priority.

Proceedings of BIW10, Santa Fe, New Mexico, US TUPSM112

Instrumentation

485

CONCLUSION

Continuous 16-bit bunch-by-bunch data acquisition at

500 MHz has been realized on the ALS TFB system. The

MPMC core provides a fairly flexible interface to the

DDR that includes multi-port arbitration. The NPI port

provides the highest performance burst transaction of the

port types supported by the MPMC. The performance

requirements for each port must be carefully considered

and addressed by the arbitration scheme. The future of the

technologies in use will support ever increasing demands

on resolution, bandwidth, and buffer length for bunch-by-

bunch data capture.

ACKNOWLEDGEMENTS

The authors would like to thank David Robin, Greg

Portmann, and the rest of the ALS Physics Group for

supporting and motivating this project. Also, thanks to

Kurt Vetter and Kiman Ha for informal discussions and

emails contributing to this effort and for testing the

firmware on the ML507 evaluation platform.

REFERENCES

[1] J. Weber, M. Chin, “ALS FPGA-Based Transverse

Feedback Electronics”, BIW08, Tahoe City, CA,

May, 2008.

<http://accelconf.web.cern.ch/AccelConf/BIW2008/p

apers/tuptpf017.pdf>.

[2] Xilinx. “Virtex-5 FPGA Data Sheet: DC and

Switching Characteristics”, DS202 (v5.2), June 25,

2009,

<http://www.xilinx.com/support/documentation/data_

sheets/ds202.pdf>.

[3] Micron. “256Mb: x4, x8, x16 DDR2 SDRAM

Features”, 256MbDDR2.pdf – Rev. M 7/09 EN, July,

2009.

<http://download.micron.com/pdf/datasheets/dram/dd

r2/256MbDDR2.pdf>.

[4] Xilinx. “Multi-Port Memory Controller (MPMC)

(v5.04.a)”, DS643, December 2, 2009,

<http://www.xilinx.com/support/documentation/ip_d

ocumentation/mpmc.pdf>.

[5] K. Vetter, et al, “NSLS-II RF Beam Position

Monitor”, these proceedings.

TUPSM112 Proceedings of BIW10, Santa Fe, New Mexico, US

Instrumentation

486

