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Abstract

Schottky spectra of extremely well cooled low-intensity
ion beams suffer from a low signal-to-noise ratio. Their
digital post-processing is neither well prescribed nor triv-
ial. The paper presents a comparison of the use of Hanning
windows with overlapping samples on one hand, and of
multitaper analysis, on the other hand. It is shown that the
area under the Schottky peak is better defined if the multi-
taper method is used.

INTRODUCTION

Modern Spectrum spectrum analyzers nowadays usually
offer several types of measurements. One of these measure-
ment modes records the digitized data in the time domain
after down conversion of the central frequency, as well as
digital and analog filtering in a predetermined frequency
span which is directly coupled to the sampling frequency.
The digital data consist of in-phase and quadrature (IQ)
components which are stored on disk. Because the data
are stored without any gap in the time domain it is possible
to analyze data packages of any desired size.

This article describes a set of first results which were
gained with an RSA3303B analyzer from Tektronix. Two
types of data evaluation are presented:

1. Evaluation using the classical averaging method with
overlapping averages using a cosine (von Hann or
Hanning) window.

2. Evaluation using the more advanced multitaper
method.

MATHEMATICAL MODELLING OF
SCHOTTKY SPECTRA

Single Particle Signal

The classical picture of Schottky spectra of coasting
beams assumes a beam of 𝑁 particles with constant rev-
olution frequecies 𝜔𝑛 (or revolution periods 𝑇𝑛 = 2𝜋/𝜔𝑛)
which are positioned azimuthally in a random fashion. In
order to take account of this position, one assumes a time
lag 𝜏𝑛, 0 ≤ 𝜏𝑛 < 𝑇𝑛 for each particle. Any interaction
among the particles or with other particles (internal gas jet
target, cooling of any kind etc.) is neglected.

In the limit of an infitite number of passages through the
Schottky probe, the Fourier transform of the resulting sig-
nal of each particle can be written

�̃�(Ω) =
𝑍𝐿𝑄𝑒𝜔

2

+∞∑

𝑚=−∞
𝑆(Ω)𝑒−𝑖Ω𝜏𝑛𝛿(Ω−𝑚𝜔𝑛) (1)

where 𝑆(Ω) is the Fourier transform of the sensitivity 𝑠(𝑡).
The spectrum has peaks at every harmonic of the revolu-
tion frequency. As the phases 𝜔𝑛𝜏𝑛 are random, one has to
describe somehow its statictical properties.

Schottky Spectrum

The ’process’ 𝑈(𝑡) is characterized by its autocorrela-
tion function

𝑅(𝑡, 𝜏) = ⟨𝑈(𝑡+ 𝜏/2)𝑈(𝑡− 𝜏/2)⟩ (2)

where < ⋅ ⋅ ⋅ > denotes a sample average. If the pro-
cess 𝑈(𝑡) is stationary, then 𝑅 is independent of 𝑡, i.e.
𝑅(𝑡, 𝜏) = 𝑅(𝜏). The Fourier 𝑆(Ω) transform of 𝑅(𝜏) is
then called the power spectrum of 𝑈 . If the unit of 𝑈 is
volts, then 𝑆(Ω) has the unit V2s. In the case of the Schot-
tky spectrum, it is given by

𝑆(Ω) =
𝑁(𝑄𝑒)2

𝑚
Ψ(Ω/𝑚) (3)

where Ψ(𝜔) is the revolution frequency distribution, as-
suming that there is no Schottky band overlap. It is as-
sumed that Ψ(𝜔) is normalized to one.

Due to its statistical origin, the power spectrum can only
be estimated from a single measurement.

ANALOG SIGNAL PROCESSING

Figure 1 shows how the analog signal from the Schottky
pick-up is processed. The mixer can be modeled mathe-
matically as a multiplier with the input signal 𝑈𝑖

𝑈𝑛(𝑡) ∝ cos (𝜔𝑛𝑡+ 𝜙𝑛) = cos ((𝜔LO + 𝛿𝜔𝑛) 𝑡+ 𝜙𝑛)
(4)

and the local oscillator (LO) signal

𝑈LO ∝ cos(𝜔LO𝑡) (5)

yielding signals at 𝜔𝑖 ± 𝜔LO. If this is done by using first
the LO frequency directly and secondly after a 90 degree
phase shift, one gets the in-phase (I) and quadrature phase
(Q) low-frequency signals

𝑈𝐼 ∝ cos (𝛿𝜔𝑛𝑡− 𝜙𝑛) (6)

𝑈𝑄 ∝ sin (𝛿𝜔𝑛𝑡− 𝜙𝑛) (7)

If both signals are available, one can decide which parts of
the low frequency signal arise from rf components at either
𝜔LO+𝛿𝜔𝑛 or 𝜔LO−𝛿𝜔𝑛. This can be done either by using
another 90 degree shift of the quadrature signal and adding
or subtracting this signal from the in phase signal (image
reject mixer) or by digitizing both signals and treat them
numerically as a complex number 𝑈𝐼 + 𝑖𝑈𝑄. After a digi-
tal Fourier transform (DFT) one gets different components
below and above zero frequency.
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Figure 1: Signal processing in vector spectrum analyzer IQ
mixer.

DIGITAL SPECTRUM ANALYSIS

We assume a digital complex dataset 𝑈𝑛, 0 ≤ 𝑛 <
𝑁 − 1, sampled at a rate 1/Δ𝑡. In the frequency domain
this corresponds to a spectrum �̃�𝑛 with frequency steps
𝛿𝑓 = 2𝑁/Δ𝑡 The digital signal has two essential draw-
backs, which may lead to problems:

1. It is of finite length, leading to spectral leakage, which
can be overcome by tapering at the expense of spectral
resolution.

2. It is sampled at a finite rate, which limits the spectral
width and can cause aliasing.

While aliasing can normally be overcome by using a suf-
ficiently high number of points in the DFT, the effect of
leakage is more difficult to handle.

Leakage occurs because the measurement time interval
𝑇 is finite. If an infinite set of measurements is cut abrubtly,
one can represent the resulting frame as the product of the
infinite set with a rectangular function. In the frequency
domain this is equivalent to performing a convolution of the
Fourier transform of the time series with a sin(Ω𝑇/2)/Ω
function which would cause sidelobes around every sharp
frequency.

These sidelobes must be decreased by windowing. One
multiplies the time series 𝑈𝑖 with a series exhibiting 𝑤𝑛

soft edges.
𝑈𝑛 	→ 𝑈𝑛𝑤𝑛 (8)

A typical window used is the so called Hanning window (a
name that was introduced in the anglo-saxon literature in
order to refer to a German engineer called von Hann).

𝑤𝑛 = ℎ𝑛 =

(
2

3(𝑁 + 1)

)1/2 [
1− cos

(
2𝜋𝑛

𝑁 + 1

)]
(9)
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Figure 2: Overlapping sample averaging versus multitaper
averaging.

Overlapping sample averages

Because windowing is equivalent to throwing away data
at the edges of the time series one can use overlapping sam-
ples in order to include all of the data.

For each sequence 𝑈𝑖 one gets the spectral estimate

𝑆𝑗 =

∣∣∣∣∣

𝑁−1∑

𝑛=0

𝑈𝑛𝑤𝑛 exp (−2𝜋𝑖𝑗)

∣∣∣∣∣

2

(10)

If one is not interested in temporal resolution, it is a
common practice to average over these overlapping sam-
ples. An averaged estimate can be caculated by taking the
mean over single overlapping sequence estimates. In the
following we call this kind of averaging Walsh overlapping
sample averages (wosa, according to the textbook [1]), al-
though we do not use any explicit averaging.
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Multitaper Analysis

In contrast to overlapping averages, the multitaper
method [1] uses orthogonal sequences 𝑣𝑛,𝑘 as tapers on the
same finite dataset:

∑

𝑛

𝑣𝑛,𝑘𝑣𝑛,𝑙 = 𝛿𝑘,𝑙 (11)

In particular one uses the DPSS tapers (Disctrete Prolate
Spheroidal Sequences) 𝑣𝑛,𝑘(𝑊 ), which are eigensolutions
to the eigenvalue equation

𝑁−1∑

𝑛=0

sin (2𝜋𝑊 (𝑛−𝑚))

𝜋(𝑛−𝑚)
𝑣𝑛,𝑘(𝑊 ) = 𝜆𝑘(𝑊 )𝑣𝑚,𝑘(𝑊 )

(12)
with eigenvalue 𝜆𝑘(𝑊 ). These sequences depend on a pa-
rameter 𝑊 called the resolution bandwidth. The decisive
property of DPSS sequences is that their use as windows
minimizes spectral leakage. The spectral estimate is then
calculated using the average

𝑆𝑚 =

𝐾−1∑

𝑘=0

∣∣∣∣∣

𝑁−1∑

𝑛=0

𝑈𝑛𝑣𝑛,𝑘𝑒
2𝜋𝑖𝑛𝑚

∣∣∣∣∣

2

(13)
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Figure 3: Series of DPSS tapers.

Figure 3 shows the DPSS tapers used in this paper with
𝑁 = 1024 and the bandwidth parameter 𝑊 = 4/𝑁 . This
bandwidth appears to be an optimum choice for the sim-
plification of peak identification. The tapers are numbered
towards decreasing eigenvalues 𝜆𝑘(𝑊 ), i.e. the 𝑘 = 0 ta-
per is the one with the largest eigenvalue. Multitapering
has some remarkable features:

∙ The tapers can be non-zero (except for 𝑘 = 0).

∙ Whereas the 𝑘 = 0 taper is non-zero only in the mid-
dle of the time series, the following tapers more and
more approach its edges. The 𝑘 = 5 taper is even
non-zero at the edges, which leads to some spectral
leakage.

∙ Because the edges are used, the information contained
in the time series is used effectively, in contrast to
singe windowing where the information at the edges
is effectively thrown away.

∙ Because the tapers are orthogonal, the spectra used in
the averaging process are independent.

The tapers shown in Figure 3 have been calculated from a
recipe presented in chapter 8 of [1], where a different eigen-
value equation by Slepian [2] is used with a tridiagonal ma-
trix which has to be inverted. Furthermore the different
eigenvectors are calculated by forced orthogonalization.

COMPARING SPECTRAL ESTIMATES
WITH DIFFERENT EVALUATION

ALGORITHMS

Figure 4 shows two spectral series calculated from iden-
tical time domain data. These data were measured at the
30th harmonic (59.220875 MHz) of the Schottky spectrum
of a 1 nA beam of 40Ar18+ ions (about 180 particles) at an
energy of 400 MeV/u. The momentum spread was reduced
by electron cooling to extremely low values (see [3], [4]
and [5]). The spectra on the left-hand side are single spec-
tra with Hanning windowing and 50 % overlap. The spec-
tra are taken from records (sometimes also called frames)
in the time domain containing 1024 points. The distance
between independent (non-overlapping) records is 128 ms.

The spectra on the right-hand side were calculated from
the same data using the multitaper method with the first six
of the 𝑁 = 1024, 𝑊 = 𝑁/4 tapers as presented in the
previous section. Because there is no overlap, the number
of spectra on the left-hand side is roughly twice as large as
on the right-hand side.

In both cases one can see in many spectra a distinct peak
at frequencies around 59,330,875 MHz. However, there
are also many cases where the peak seems to hop or to be
smeared out. The physical reason of this behaviour is not
yet very clear. In any case, it leads to a substantial diffi-
culty in interpreting such spectra. It is therefore crucially
important to have meaningful spectral estimates.

When comparing both estimates, one has the impression
that the peaks are somwhat better distinguished in the mul-
titaper estimates. This impression can be confirmed numer-
ically. To this purpose the area under the peak in an interval
with a span of 10 Hz was determined and the background
was subtracted. These areas are shown in figure 5.

It is visually obvious that the variation of the curve ar-
eas from the multitaper estimates is less than the variation
due to the wosa estimates. Table 1 shows the average peak
area < 𝐹 >, its standard deviation 𝜎(𝐹 ) and the relative
deviation 𝜎(𝐹 )/ < 𝐹 >. Obviously for the wosa spec-
tra the standard deviation is roughly as large as the mean
value, for the multitaper estimates the standard deviation is
two-thirds of the mean value.

One can therefore conclude that an evaluation using mul-
titapers is superior to the usual overlapping sample es-
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Figure 4: Estimated spectra with Hanning window and 50% overlap (left) and multitapering without overlap (right).
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Figure 5: Calculated peak areas with wosa and multitaper-
ing.

timates with Hanning windows. Furthermore it should
be noted that the spectra seem to feature intrinsic shifts
or temporary heating effects, which prevent a smaller
𝜎(𝐹 )/ < 𝐹 > value.

Table 1: Basic Parameters of the CR

< 𝐹 > 𝜎(𝐹 ) 𝜎(𝐹 )/ < 𝐹 >
wosa 4.05 ⋅ 10−8 3.85 ⋅ 10−8 0.95
multitaper 5.60 ⋅ 10−8 3.64 ⋅ 10−8 0.65
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