
STUDY OF COLLECTIVE EFFECT IN IONIZATION COOLING ∗

D. Huang, Illinois Institute of Technology, Chicago, IL 60616, USA
K.Y. Ng, Fermilab Batavia, IL 60510, USA

T.J. Roberts, Muons Inc., Batavia, IL 60510, USA

Abstract

As a charged particle passes through a non-gaseous
medium, it polarizes the medium and induces wake fields
behind it. The interaction with wake fields perturbs the
stopping power for the beam particles that follow. The per-
turbation strongly depends on the densities of both the in-
cident beam and the medium. To understand this collective
effect, detailed studies have been carried out. Both analytic
and simulation results are obtained and compared.

INTRODUCTION

The study of the physics of a charged particle passing
through a non-gaseous medium is of long history [1, 2, 3].
For a single particle, if its momentum is high enough, it
will lose energy through both ionization process and den-
sity effect. The latter has been systematically studied. For
a beam consisting of a large number of particles, the inter-
action among the beam particles should also be taken into
account in order to describe the process correctly.

Essentially, the density effect is introduced by the po-
larization of the medium. The electric fields from the po-
larized medium molecules generate wake fields behind the
incident particle, which perturb the motion of the beam
particles following. If the particle density of the beam is
high enough, the wake will enhance the stopping power for
beam particles, and may possibly increase the rate of ion-
ization cooling.

In this article, we derive the expressions for the wake
electric field introduced by a single incident charged par-
ticle and its perturbation on the stopping power. This
is extended to a two-particle system and a multi-particle
system with various distributions. The comparison with
simulations is next demonstrated. Finally, the damping
mechanism on the wake is discussed, and its effect on the
stopping-power enhancement is found to be important.

WAKE ELECTRIC FIELD

First, let us focus on a single particle of charge 𝑒 moving
with velocity 𝑣 in the 𝑧 direction, where −𝑒 is the electron
charge. The particle is at longitudinal position 𝑧 = 𝑧1 at
time 𝑡 = 0. Cylindrical coordinates are used with 𝜌 denot-
ing the transverse directions. The scalar potential generated
by both the incident particle and polarized medium in the
Coulomb gauge is given by

𝜙(�⃗�, 𝑡) =
𝑒

𝜋𝑣

∫
𝑑𝜔

∫
𝜅𝑑𝜅𝐽0(𝜅𝜌)

𝜅2 + 𝜔2/𝑣2
𝑒𝑖

𝜔
𝑣 (𝑧−𝑧1−𝑣𝑡)

𝜀(𝑘2, 𝜔)
, (1)
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where 𝐽0 is the Bessel function. The wave number vector
is denoted by �⃗� = (�⃗�, 𝑘𝑧) and the frequency by 𝜔. In the
above, the integration over 𝑘𝑧 and �⃗� ⋅ �⃗� have already been
carried out. The polarization of the medium is described by
the dielectric constant, which in a dispersive medium takes
the form

𝜀(𝑘2, 𝜔) = 1− 𝜔2
𝑝

∑
𝑗

𝑓𝑗
𝜔2 − 𝜔2

𝑗 + 𝑖𝜔Γ𝑗
, (2)

where 𝑓𝑗 is the fraction of bound electrons that oscil-
late with the bound frequency 𝜔𝑗 and damping rate 1

2Γ𝑗 ,
with

∑
𝑗 𝑓𝑗 = 1. In the above, 𝜔𝑝 =

√
4𝜋𝑛𝑒𝑒2/𝑚𝑒 is

the plasma frequency, where 𝑚𝑒 is the electron mass and
𝑛𝑒 the electron density. We make the assertion that 𝜔𝑝

is much larger than the bound frequencies and damping
rates.1 Then 1

2Γ𝑗 can be replaced by the infinitesimal posi-
tive number 𝜖, leading to

1

𝜀
=

𝜔2

(𝜔 + 𝑖𝜖)2 − 𝜔2
𝑝

=
𝜔2

(𝜔 − 𝜔𝑝 + 𝑖𝜖)(𝜔 + 𝜔𝑝 + 𝑖𝜖)
.

(3)
Contour integration over 𝜔 can now be performed giving

𝜙(�⃗�, 𝑡) = 𝑒

∫
𝑑𝜅

𝜅2𝐽0(𝜅𝜌)

𝜅2+𝜔2
𝑝/𝑣

2
𝑒−𝜅∣𝑧−𝑧1−𝑣𝑡∣

+
2𝑒𝜔𝑝

𝑣

∫
𝑑𝜅

𝜅𝐽0(𝜅𝜌)

𝜅2+𝜔2
𝑝/𝑣

2
sin

𝜔𝑝

𝑣
(𝑧−𝑧1−𝑣𝑡)𝜃(𝑧1+𝑣𝑡−𝑧).

(4)
The limits of integration are from 𝜅 = 0 to

𝜅 =
𝜔𝑝

𝑣

√
𝑥2𝑚 − 1 with 𝑥𝑚 =

2𝛾𝑚𝑒𝑣
2

ℏ𝜔𝑝
, (5)

which corresponds to the maximal momentum transfer in
a collision. In the above, 𝛾 = 1/

√
1− 𝑣2/𝑐2, 𝑐 is the ve-

locity of light, and ℏ is the reduced Planck constant. The
second term in Eq. (4) is the potential coming from the po-
larization of the medium, and the first term is the medium-
modified self-field of the incident charged particle. The lon-
gitudinal and transverse electric fields derived from the sec-
ond term vanish in front of the particle and are therefore the
wake fields. Behind the particle, they take the form:

𝐸𝑤
𝑧 (�⃗�, 𝑡) = −2𝑒𝜔2

𝑝

𝑣2

∫
𝑑𝜅

𝜅𝐽0(𝜅𝜌)

𝜅2+𝜔2
𝑝/𝑣

2
cos

𝜔𝑝(𝑧−𝑧1−𝑣𝑡)
𝑣

,

𝐸𝑤
𝜌 (�⃗�, 𝑡) = +

2𝑒𝜔2
𝑝

𝑣2

∫
𝑑𝜅

𝜅2𝐽1(𝜅𝜌)

𝜅2+𝜔2
𝑝/𝑣

2
sin

𝜔𝑝(𝑧−𝑧1−𝑣𝑡)
𝑣

.
(6)

Evaluating at the particle location (𝑧 = 𝑧1+ 𝑣𝑡, 𝜌 = 0), we
obtain the longitudinal field on axis,

𝐸𝑤
𝑧 = −2𝑒𝜔2

𝑝

𝑣2
ln𝑥𝑚. (7)

1We believe the bound frequencies are one order of magnitude smaller
than 𝜔𝑝 in liquid hydrogen.
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The corresponding energy loss per unit time or stopping
power is

𝑑𝑊

𝑑𝑡
= 𝑒𝑣𝐸𝑤

𝑧 = −2𝑒2𝜔2
𝑝

𝑣
ln𝑥𝑚. (8)

Behind the particle, the electric wake can be very well ap-
proximated by extending the upper limit of the 𝜅 integra-
tions to infinity, resulting in

𝐸𝑤
𝑧 =

2𝑒𝜔2
𝑝

𝑣2
𝐾0

(𝜔𝑝𝜌

𝑣

)
cos

[(
𝑧 − 𝑧1
𝑣

− 𝑡

)
𝜔𝑝

]
,

𝐸𝑤
𝜌 =

2𝑒𝜔2
𝑝

𝑣2
𝐾1

(𝜔𝑝𝜌

𝑣

)
sin

[(
𝑧 − 𝑧1
𝑣

− 𝑡

)
𝜔𝑝

]
, (9)

with𝐾0,1 the modified Bessel functions of the second kind.
The vector potential contributes only to the medium-

modified self-field when bound frequencies are neglected.
The electric field derived from it consists of two parts: one
part cancels the medium-modified stationary self-field from
the scalar potential in Eq. (4), while the other represents the
medium-modified self-field of a moving charge. The total
self-field can be written as

𝐸𝑠
𝑧 = 𝑒

∫
𝑑𝜅

𝜅3𝐽0(𝜅𝜌)

𝜅2 + 𝜔2

𝑣2

𝑒
−𝛾

√
𝜅2+

𝜔2
𝑝

𝑐2
∣𝑧−𝑧1−𝑣𝑡∣

,

𝐸𝑠
𝜌 = 𝑒

∫
𝑑𝜅

𝛾𝜅2𝐽1(𝜅𝜌)

𝜅2 +
𝜔2

𝑝

𝑣2

√
𝜅2 +

𝜔2
𝑝

𝑐2
𝑒
−𝛾

√
𝜅2+

𝜔2
𝑝

𝑐2
∣𝑧−𝑧1−𝑣𝑡∣

.

In the absence of the medium (𝜔𝑝 = 0), it reduces to the
familiar pancake self-field,

𝐸𝑠
𝑧 =

𝑒𝛾𝑍

(𝜌2 + 𝛾2𝑍2)3/2
, 𝐸𝑠

𝜌 =
𝑒𝛾𝜌

(𝜌2 + 𝛾2𝑍2)3/2
, (10)

where 𝑍 = 𝑧− 𝑧1− 𝑣𝑡. In the presence of the medium, the
self-field decays very much faster with respect to 𝑍 . For a
bunch with longitudinal and transverse radii ≫ 𝑣/𝜔𝑝, the
self-field has almost no influence compared with the wake
fields. Therefore we ignore it in the rest of our discussions.

TWO-PARTICLE SYSTEM
Now let us discuss the stopping power for a two-particle

system. The particles are denoted by 1 and 2, respectively,
with the charge density

𝜌(�⃗�, 𝑡) = 𝑒 [𝛿(�⃗� − �⃗�1 − �⃗�1𝑡) + 𝛿(�⃗� − �⃗�2 − �⃗�2𝑡)] . (11)

The electric field at (�⃗�, 𝑡) is

�⃗�(�⃗�, 𝑡) = − 𝑖2𝑒

4𝜋2

∫
𝑑3𝑘

∫
𝑑𝜔

�⃗�𝑒−𝑖𝜔𝑡

𝜀𝑘2
×

×
[
𝑒𝑖�⃗�⋅(�⃗�−�⃗�1)𝛿(�⃗� ⋅�⃗�1−𝜔) + 𝑒𝑖�⃗�⋅(�⃗�−�⃗�2)𝛿(�⃗� ⋅�⃗�2−𝜔)

]
. (12)

The energy gained per unit time by the two particles are

𝑑𝑊1,2

𝑑𝑡
= − 𝑖2𝑒

2

4𝜋2

∫
𝑑3𝑘

�⃗� ⋅�⃗�𝑗
𝑘2𝜀(𝑘2, �⃗�⋅�⃗�1,2)

×

×
[
1 + 𝑒±𝑖�⃗�⋅(�⃗�1−�⃗�2)±𝑖(�⃗�⋅(�⃗�1−�⃗�2)𝑡)

]
. (13)
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Figure 1: Stopping power enhancement due to collective wake
effect on a two-particle system as a function of 𝑅=𝑟𝜔𝑝/𝑣, where
𝑟 is the separation between the two particles.

For the special case where �⃗�1 = �⃗�2 = �⃗�, we have the aver-
age energy loss per particle per unit time or stopping power

𝑑𝑊

𝑑𝑡
=− 𝑖𝑒2

2𝜋2

∫
𝑑3𝑘

�⃗�⋅�⃗�
𝑘2𝜀(𝑘2, �⃗�⋅�⃗�)

[
1 + cos(�⃗� ⋅ �⃗�)

]
,

where �⃗� = �⃗�1 − �⃗�2. Here, only the imaginary part of 1/𝜀
contributes. After averaging over all orientations of this
two-particle system, we arrive at

〈
𝑑𝑊

𝑑𝑡

〉
angles

= −𝑒
2𝜔2

𝑝

𝑣
ln𝑥𝑚

[
1 +𝐺(𝑅)

]
, (14)

where the correlation function or stopping power enhance-
ment is defined as

𝐺(𝑅) =
− sin𝑅𝑥𝑚

𝑅𝑥𝑚
+

sin𝑅

𝑅
− Ci(𝑅𝑥𝑚) + Ci(𝑅)

ln𝑥𝑚
,
(15)

and Ci(𝑥) = − ∫∞
𝑥 𝑑𝑦 cos 𝑦/𝑦 is the cosine integral. Here,

the distance of separation of the two particles, 𝑅 = 𝑟/𝑎
𝐼
,

has been normalized to 𝑎
𝐼
=𝑣/𝜔𝑝 or the interaction length.

The correlation function [4] as depicted in Fig. 1 shows
that 𝐺(𝑅) = 1 at 𝑅= 1 and decreases rapidly when 𝑅 ≫
1 with oscillation period equal to the plasma wavelength
𝜆𝑝 =2𝜋𝑎𝐼 . It is interesting to point out that the averaging
over all orientations cancels out all self-field contribution.

VARIOUS BEAM DISTRIBUTIONS
In this section we will discuss the stopping power en-

hancement for a particle in the center of a bunch as a result
of the polarization wake. Various bunch distributions are
used and their importance analyzed.

Uniformly Distributed Sphere

Let us start with a uniformly distributed spherical 𝑁𝑏-
particle bunch of radius 𝑟0. The extra collective stopping
power 𝐺𝑡 received by the particle at bunch center is ob-
tained by integrating the two-particle correlation function
𝐺(𝑅) of Eq. (15) over all the particles in the bunch. We get
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𝐺𝑡=
3𝑁𝑏

𝑅3
0

∫ 𝑅0

0

𝑅2𝐺(𝑅)𝑑𝑅 =𝑁𝑏
𝑓(𝑅0)−𝑓(𝑅0𝑥𝑚)

ln𝑥𝑚
, (16)

with 𝑅0 = 𝑟0𝜔𝑝/𝑣, the reduced bunch radius and

𝑓(𝑢) =

(
1

𝑢3
+

1

𝑢

)
sin𝑢− cos𝑢

𝑢2
− Ci(𝑢). (17)

Since 𝑥𝑚 is usually a very big number, the above can be
readily approximated as

𝐺𝑡 ≈ 3𝑁𝑏 sin𝑅0

𝑅3
0 ln𝑥𝑚

. (18)

As an example, consider a 𝛾 = 2.2 bunch containing
𝑁𝑏 = 1× 1012 muons going through liquid hydrogen of
density 𝜌

𝐻2
= 0.07099 g/cm−3. The electron density is

𝑛𝑒 = 𝜌
𝐻2
𝑁𝐴 = 4.275× 1028 m−3, where 𝑁𝐴 is Avo-

gadro’s number. The plasma frequency is therefore 𝜔𝑝 =
1.166×1016 s−1 leading to 𝑥𝑚 = 2.323×105. If bunch
is a uniformly distributed sphere of radius 𝑟0 = 1 mm,
𝑅0=4.369×104 and the envelope of𝐺𝑡 is ±0.0029. How-
ever, since the bunch edge can never be made sharper than
the interaction length 𝑎

𝐼
=2.289×10−8 m, the rapid oscil-

lation of 𝐺𝑡 with 𝑅0 with period 𝜆𝑝 implies the enhance-
ment of stopping power from correlation is essentially zero.

Cylindrical Bunch
Let us consider next distributions having the separable

form 𝑓(𝑧, 𝜌) = 𝑓𝑧(𝑧)𝑓𝜌(𝜌). One example is a bunch with
uniform distribution in the transverse direction, but that is
tapered at both end longitudinally, or

𝑓𝑧(𝑧) =
𝐴𝑛

𝑧

(
1− 𝑧2

𝑧2

)𝑛

, 𝑓𝜌(𝜌) =
2𝜋𝜌

𝜋𝜌2
, (19)

where 𝐴𝑛 = Γ(𝑛 + 3
2 )/[

√
𝜋Γ(𝑛 + 1)] for any 𝑛 > −1, 𝜌

is the transverse radius of the bunch, and ±𝑧 are the longi-
tudinal extents of the bunch. We can no longer apply the
expression of the all-orientation-averaged correlation func-
tion 𝐺(𝑅) of Eq. (15), because the distribution is now dif-
ferent in different directions. Instead, we start from Eq. (9)
to compute𝐺𝑡, the collective stopping power enhancement
for a particle at the center of the bunch, by the integration,

𝐺𝑡 ln𝑥𝑚=𝑁𝑏

∫ 𝑧

0

𝑑𝑧 𝑓(𝑧, 𝜌) cos

(
𝑧

𝑎
𝐼

)∫ 𝜌

0

𝑑𝜌𝑓𝜌(𝜌)𝐾0

(
𝜌

𝑎
𝐼

)
,

(20)
and obtain easily

𝐺𝑡 ln𝑥𝑚 =

√
𝜋𝐴𝑛

(𝜔𝑝𝜌/𝑣)2

(
2𝑣

𝜔𝑝𝑧

)𝑛+
1
2
𝐽
𝑛+

1
2

(
𝜔𝑝𝑧

𝑣

)
. (21)

We see clearly that there is an oscillation in the Bessel func-
tion 𝐽

𝑛+
1
2

which gives positive or negative enhancement

depending very sensitively on the half bunch length 𝑧. In
fact, when 𝑛 is an integer, the Bessel function reduces to
sine and cosine with period 𝜆𝑝, and the result will be simi-
lar to that of the uniform distribution in a sphere discussed
earlier. We learn from Eq. (21) that the longitudinal and
transverse beam sizes behave very differently, and it is the
longitudinal that introduces the oscillations. To avoid oscil-
lations, we need to go to a distribution without finite longi-
tudinal boundaries.

Lorentzian Distribution
Let us keep the transverse distribution to be finite and

uniform, but let the longitudinal distribution be

𝑓𝑧(𝑧) =
𝑧1
𝜋

1

𝑧2 + 𝑧21
, (22)

where 𝑧1 is the half longitudinal length at half maximum.
The correlation stopping power enhancement𝐺𝑡 for a par-
ticle at the bunch center is found to be

𝐺𝑡 ln𝑥𝑚 =
𝑁𝑏𝑒

−𝑧1/𝑎𝐼

(𝜌/𝑎
𝐼
)2

. (23)

If 𝜌= 𝑧1 = 1 mm, 𝜌/𝑎
𝐼
= 𝑧1/𝑎𝐼

= 4.37 × 104. Then the
stopping-power enhancement is 𝐺𝑡 = 45.3 × 10−19000,
which is essentially zero. In order to have a more reason-
able effect at the bunch intensity of 1×1012, we require
𝜌/𝑎𝐼 = 𝑧1/𝑎𝐼 =20. Then 𝐺𝑡 = 0.417. If 𝜌/𝑎𝐼 = 𝑧1/𝑎𝐼 =
25, 𝐺𝑡 = 0.0018 instead. However, one must remember
that at 𝑎

𝐼
=𝑣/𝜔𝑝=2.289×10−8 m, these examples corre-

spond to 𝑧1=4.6×10−7 and 5.7× 10−7 m, or bunches of
sub-micron lengths. At this moment, the most aggressive
cooling scheme proposed by Neuffer [5] is to have an even-
tual bunch length of 30 cm and transverse radii 𝑟0=50 𝜇m.

Tri-Gaussian Distribution
Let

𝑓𝑧(𝑧) =
𝑒−𝑧2/(2𝜎2

𝑧)√
2𝜋𝜎𝑧

and 𝑓𝜌(𝜌) = 𝜌
𝑒−𝜌2/(2𝜎2

𝜌)

𝜎2𝜌
. (24)

The stopping power enhancement can be integrated readily
to the exponential function. However, when 𝜎𝜌/𝑎𝐼 ≫ 1, it
can be neatly reduced to

𝐺𝑡 ln𝑥𝑚 =
𝑁𝑏𝑒

−(𝜎𝑧/𝑎𝐼
)2/2

(𝜎𝜌/𝑎𝐼
)2

, (25)

which is much smaller than the case of the Lorentzian dis-
tribution. Here, we again see that the transverse and longi-
tudinal behave every differently. Although both are Gaus-
sian distributed, the longitudinal decay of the collective
stopping power enhancement is Gaussian, while the trans-
verse decay is (𝑎𝐼/𝜎𝜌)

2, which is very much milder.

Exponential Distribution
In order to achieve a larger stopping power enhancement,

the distribution must roll off very rapidly from the center of
the bunch. A possible distribution is the exponential

𝑓𝑧(𝑧) =
𝑒−∣𝑧∣/𝑧1

2𝑧1
and 𝑓𝜌(𝜌) =

𝑒−𝜌/𝜌1

𝜌1
. (26)

When 𝑧1/𝑎𝐼
≫ 1 and 𝜌1/𝑎𝐼

≫ 1, 𝐺𝑡 is given by

𝐺𝑡 ln 𝑥𝑚 ≈ 𝜋𝑁𝑏

8(𝜌1/𝑎𝐼
)(𝑧1/𝑎𝐼

)2
. (27)

Or 𝐺𝑡 = 3.81 × 10−4 at 𝜌1 = 𝑧1 = 1 mm. If either the
bunch sizes are each reduced 5 times or the bunch inten-
sity is increased by a factor of 125, the collective effect
enhancement will become 4.8%, and thus more significant.
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In Neuffer’s scheme [5] with transverse bunch radii 𝜌1=
50 𝜇m and bunch length 𝑧1 = 30 cm, we get a stopping
power enhancement of𝐺𝑡 = 8.47× 10−8, which increases
rapidly to 7.62×10−3 when the bunch length is reduced
to 𝑧1 = 1 mm. Here, again we notice that the longitudinal
bunch length is the most important factor that determines
the enhancement. For example, if we divide a bunch up
longitudinally into bunchlets of shorter lengths but with the
particle density unchanged, the stopping power enhance-
ment for the bunch particles will be increased.

COMPARISON WITH SIMULATION
OOPICPro [6] developed by Tech-X Corporation is able

to simulate a charged particle beam passing through mat-
ter. We simulate a 𝛾 = 2.2 tri-Gaussian muon bunch with
rms radii 1 mm traveling through a plasma medium of elec-
tron density 𝑛𝑒 = 4.28 × 1018 m−3 (which is very much
less than that in liquid hydrogen). The peak beam density
is 5 × 1019 m−3, corresponding to total bunch intensity
𝑁𝑏 = 0.787 × 1012. The longitudinal wake is shown in
Fig. 2. The same wake can be computed by integrating our
derived wake in Eq. (9) over all the particles in the bunch
in a fake liquid hydrogen medium of the same low density.
The field patterns in both the longitudinal and transverse
directions agree with the simulation results. For example,
the oscillation wavelength is 𝜆𝑝 = 1.43 cm corresponding
to the plasma frequency of 𝜔𝑝 = 1.17×1011 s−1. How-
ever, OOPICPro gives the peak longitudinal wake electric
field 1.02× 108 V/m, while the computed one in Fig. 3
gives 4×108 V/m. The discrepancy may come from the
fact that OOPICPro treats the medium as a fully ionized
plasma while we treat the medium as a liquid with polar-
ized molecules. This difference will be examined next.

RELAXATION AND DAMPING
We need to address the question of relaxation or damping

of the plasma oscillation to determine whether the oscilla-
tory wake can be established and sustained.

Figure 2: (Color) The longitudinal wake electric field behind an
incident muon bunch simulated by OOPICPro with electron den-
sity 4.28 × 1018 m−3 and peak particle density 5 × 1019 m−3.
The bunch is tri-Gaussian distributed of rms radii 1 mm in all di-
rections with 𝛾=2.2 muons. Both the longitudinal and transverse
axes (𝑧 and 𝑟) are in m while 𝐸𝑧 is in V/m.
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Figure 3: Computed longitudinal wake behind a tri-Gaussian
bunch. Bunch sizes and medium density are the same as in the
OOPICPro simulation in Fig. 3. The bunch center is at the origin
and 2× 105 macro-particles have been used.

Cold Plasma
In a fully ionized plasma, electrons are free to move

around as a thermal gas. In the presence of the incident
muon beam, the electrons are driven into oscillations about
the background ions at plasma frequency. At the same time
these electrons collide with the ions. If a collision takes
place within one period of plasma oscillation, the plasma
oscillation will be disturbed. Thus collision with ions
serves as a damping mechanism. The collision frequency
of an electron with the ionic background is given by [7]
𝜈𝑒=2.9×10−9𝑛𝑖𝑇

−3/2
𝑒 ln Λ s−1, where 𝑛𝑖 is the ionic den-

sity in m−3, ln Λ≈10 is the cutoff logarithm, and 𝑇𝑒 is the
thermal temperature of the electrons in eV. For the above
OOPICPro simulation, we substitute 𝑛𝑖=4.28×1018 m−3

and 𝑇𝑒=1.72×10−3 eV (corresponding to 20 K) to obtain
𝜈𝑒 = 1.74×1012 s−1, which is comparable to the plasma
frequency of 𝜔𝑝 = 1.17×1011 s−1. So the wake will be
heavily perturbed. We do see some damping of the simu-
lated wake in Fig. 2, but not as heavy as estimated. The dis-
crepancy may come from the relatively higher temperature
of the ionized electrons, which may not even be in thermal
equilibrium. Since the collision frequency increases as 𝑛𝑖
while the plasma frequency increases with

√
𝑛𝑖, the damp-

ing of plasma oscillation will become more severe as the
plasma density increases. Such a simulation has been car-
ried out using OOPICPro with the plasma density increased
104-fold to 𝑛𝑖 = 4.28× 1022 m−3 while all other parame-
ters remain unchanged. The result in Fig. 4 shows that the
on-axis longitudinal wake is damped almost immediately
as soon as it is generated. The maximum ∣𝐸𝑧 ∣ is less than
8.5×105 V/m as compared with 1×108 V/m in Fig. 2.

Liquid Hydrogen
In producing Fig. 3, we employed the wake expression

without consideration of damping and the electron den-
sity lowered to 𝑛𝑒 = 4.28× 1018 m−3 so as to compare
with simulation. Now let us come back to the case of
real liquid hydrogen where the bound-electron density is
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Figure 4: (Color) OOPICPro simulation for a muon beam in a
plasma. All parameters are the same as in Fig. 2, except that the
plasma density has been increased to 4.28 × 1022 m−3. The 𝑧-
and 𝑟-axes are in m, while 𝐸𝑧 is in V/m.

𝑛𝑒 =4.270×1028 m−3 and study possible damping of the
wake. At 𝛾 = 2.2, the energy loss in liquid hydrogen is
𝑑𝑊/𝑑𝑥 = −4.5 MeV-cm2-g−1. For a bunch with cross-
sectional radii 𝑟=1 mm, consisting of 1× 1012 muons, the
density of ionized electrons is

𝑛𝑒𝑖 = −𝜌𝐻2
𝑁𝑏𝑑𝑊/𝑑𝑥

𝜋𝑟2𝐼
, (28)

where the medium density is 𝜌
𝐻2

= 0.07099 g/cm3 and
the ionization energy is 𝐼 = 35 eV. We obtain 𝑛𝑒𝑖 =
2.9 × 1023 m−3, which is five orders of magnitude less
than the density of the bound electrons and can therefore
be neglected. The damping of the wake can come from col-
lisions between the neutral polarized hydrogen molecules,
since directional changes of the polarized molecules will
disturb the plasma oscillations. The mean thermal veloc-
ity of the H2 molecules at 20 K is 𝑣

𝐻2
= 235 m/s (3

degrees of freedom considered). The typical cross sec-
tion for the hydrogen molecule in the hard-ball model is
𝜎𝐻2

≈ 3× 10−20 m2. Thus the collision frequency is
𝜈
𝐻2

≈ 4𝑛
𝐻2
𝜎

𝐻2
𝑣
𝐻2

≈ 45×1011 s−1, with 𝑛
𝐻2

the den-
sity of the H2 molecules. This is still many order smaller
than the plasma frequency of 𝜔𝑝=1.17×1016 s−1.

Another possibility of damping comes from the damping
rates of the bound frequencies of the H2 molecules. We
asserted earlier that the bound frequencies 𝜔𝑗 are an order
of magnitude smaller than 𝜔𝑝. It is reasonable to assume
that the damping rates 1

2Γ𝑗 of the bound frequencies are the
same order of magnitude as 𝜔𝑗 . Let us simplify the problem
by including only one damping rate 1

2Γ. Then 𝜖 in Eq. (3)
will be replaced by 1

2Γ, and there will be the extra factor of
𝑒−Γ𝑍/2𝑣 in the wake expressions of Eqs. (6) and (9), where
𝑍=𝑧 − 𝑧1− 𝑣𝑡. Since 2𝑣/Γ≪𝜎𝑧 , the bunch length, in the
computation of stopping power enhancement in Eq. (20),
the longitudinal beam distribution can be replaced by the
peak beam density. Taking the tri-Gaussian distribution as
an example, instead of Eq. (25), we obtain

𝐺𝑡 ln𝑥𝑚≈ 𝑁𝑏√
2𝜋(𝜎𝜌/𝑎𝐼

)2(𝜎𝑧/𝑎𝐼
)

Γ

2𝜔𝑝
. (29)

For a beam with 𝜎𝜌 = 𝜎𝑧 = 1 mm and 𝑁𝑏 = 1× 1012,
Γ/2𝜔𝑝 ∼ 0.1 implies 𝐺𝑡 ∼ 3.9 × 10−5. In addition, if
the transverse distribution is exponential, (𝜎𝜌/𝑎𝐼

)2 in the
denominator is replaced by 4(𝜎𝜌/𝑎𝐼

)/
√
2𝜋 and we have

𝐺𝑡 ∼ 190% instead. In short, the enhancement becomes
much larger in the presence of some amount of damping.

CONCLUSIONS

The perturbation of stopping power due to collective ef-
fect as a charged particle beam traverses a medium is stud-
ied in detail. This effect is introduced by the polarization
of the medium and depends on a variety of factors such as
beam distribution, beam density, and medium density.

The magnitude of the collective perturbation is fun-
damentally determined by the ratio of the separation of
beam particles and the interaction length in the polarized
medium, which is also a function of the velocity of inci-
dent particles. As this ratio decreases, the collective effect
becomes more significant.

The damping of the wake also plays an important role
in the wake field. Without any damping consideration, the
wake oscillates sinusoidally with period 𝜆𝑝 =2𝜋𝑎

𝐼
. Since

the average separation of the incident beam particles is usu-
ally much larger than the interaction length, the wake field
perturbation on stopping power is negligibly small. Damp-
ing comes from two sources: one is the collision rate be-
tween absorber molecules, which is slow and insignificant,
the other is the damping rates of the bound frequencies of
absorber electrons. Under certain circumstances, a shorter
damped wake enhances collective perturbation.

The model used in the analysis employs the dielectric
constant 𝜀 in the form of Eq. (3) where bound frequen-
cies are considered small and neglected. Further analysis
should take account of the contribution of bound frequen-
cies to the wake and their effects on the stopping-power
enhancement should be fully investigated.

Whether an enhancement of stopping power will in-
crease the ionization-cooling rate has not been proven. In
our future analysis, we will study the perturbation on the
stopping power for particles traveling at various angles rel-
ative to the traveling direction of the bunch center. This will
allow us to determine precisely the effect on the cooling
rate of the beam due to interaction with the wake generated
in the medium.
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