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Abstract 
In this paper the evolution of the phase space density of 

particle beams in external fields is presented proceeding 
from the continuity equation in the six-dimensional (6D) 
phase space ( μ -space). Such a way the Robinson theo-
rem, which includes the Liouville theorem as a special 
case, was proved in a more simple and consistent 
alternative way valid for arbitrary external fields, 
averaged fields of the beam (self-generated electro-
magnetic fields except intrabeam scattering) and arbitrary 
frictional forces (linear, nonlinear). It includes particle 
accelerators as a special case. The limits of the 
applicability of the Robinson theorem in case of cooling 
of excited ions having a finite living time are presented.         

INTRODUCTION 
In 1958 K.W.Robinson derived at once the sum of 

damping rates (decrements) of three particle oscillation 
modes in circular accelerators in the relativistic case [1]. 
He did an expansion of the power of frictional forces over 
the particle energy for the private case of radiative 
reaction force. That is why his final formulae do not 
include the term with the derivative of the power. Later, 
A.A.Kolomensky derived the formulae in the general 
form for the relativistic case and applied it to the 
ionization cooling [2]. He calculated separately damping 
rates for three directions in the curvilinear coordinate 
system and then took their sum.  

In order to derive damping increment, K.W.Robinson 
evaluated the determinant of the transfer matrix of the 
infinitesimal element of length of a particle orbit. The 
determinant determines the evolution of a 6D phase space 
volume of the beam or its density along the trajectory. 
P.Csonka for this purpose evaluated the infinitesimal 6D 
phase space volume as well and used some additional 
conditions to prove the theorem [3]. H.Wiedemann in the 
textbook [4] presented the proof of the theorem following 
Robinson’s idea but keeping the derivative of the power 
losses over the energy.  Now the theorem in the particle 
accelerator community is named by Robinson theorem or 
Robinson’s damping criterion. 

EVOLUTION OF PARTICLE BEAM 
DENSITY IN THE EXTERNAL 

ELECTROMAGNETIC FIELDS 
Let us proceed from the continuity (Liouville’s) equation 
in the 6D phase space coordinate-momentum ( , )r p

r ur
: 
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r
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equation (1) or equivalent equation / ( ) 0t div vρ ρ∂ ∂ + =
r

 
expresses the number of particles conservation law. In our 
case the form of the equation (1) is preferable as it 
presents the total derivation of the density in the 
coordinate system moving with the beam. It can be 
presented in the integral form 0 exp[ ( ) ]div v dtρ ρ= −∫

r
, 

where 0ρ  is the initial phase space density.  
The divergence rrdiv v div v= +

r r
ppdiv v
r

, 0rrdiv v =
r

 as 

the velocity 2 2 2/rv cp p m c= +
r r  does not depend on 

spatial coordinates ( ,i ir p  are independent variables). The 

value p H Frv p p p= = + =r r r r& & &
H FrF F+
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 is the force acting 

upon the particle. The conservative force HF =
r

 

( , )eE r t +
rr

( / )[ ( , )]e c v H r t
r rr

 is determined by external 

fields and the fields of the particle beam ( 0p Hdiv F =
r

), 

while FrF
r

 is the frictional force. That is why p pdiv v =r  

p Frdiv F
r

, and the equation (1) can be presented in the 

integral form 0 exp[ ]p Frdiv F dtρ ρ= −∫
r

.  

The frictional force can be written in the form FrF =
r

 

( , , )Fr r p t nχ− ⋅
r r

, where | |p p=
ur

, /n p p=
r ur

, ( , , )Fr r p tχ
r

 is 

the frictional coefficient. In this case p Frdiv F = −
r

 

Fr pdiv nχ −
r

p Frn grad χ⋅ = −
r

2 /Fr pχ /Fr pχ−∂ ∂ . We took 

into account, that pdiv n =
r

2 / p  and ( , , )p Frn grad r p tχ⋅
r r

 

= ( / ) ( / )Fr r Frp vχ χ ε∂ ∂ = ∂ ∂ , where 2 2 2 4p c m cε = +  is 
the energy of the particle. 
    The frictional power ( , , )Fr r rFr FrP F v r p t n vχ= ⋅ = ⋅ ⋅

ur r r r r
 

( , , )Frc r p tβ χ= ⋅
r

, where /rv cβ = . It follows that 

Frχ = ( , , ) /FrP r p t cβ
r

, and the equation (1) become  

           0 6exp[ ( , , ) ]D r p t dtρ ρ α= −∫
r

,                 (2) 

where 6 ( , , )D p Frr p t div Fα = −
r r

= 2 /Fr pχ + /Fr pχ∂ ∂  or: 

    6 2

( , , )1( , , ) (1 ) Fr
D

P r tr t εα ε
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r

r ( , , )FrP r tε
ε

∂
∂

r

.        

The integral (2) along a trajectory of a particle is the 
solution of the equation (1). According to (2), the 6D rate 
of the beam density change is determined by the frictional 
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power and its derivative with respect to the particle 
energy. The integral (2) is valid for the arbitrary systems 
(linear, nonlinear, coupled). We did not use a curvilinear 
coordinate system, the Jacobee’s formula for the system 
of linear differential equations, matrices; any additional 
conditions (see [3]). In our case the expression (2) is valid 
for the nonrelativistic case as well. In general case 
( 6D constα ≠ ) the solution is not exponential function. 
The equation (2) is valid for infinitesimal parts of the 
beam. The damping of different parts of the beam in some 
methods of cooling should be distinguished.  

If ( ) 0FrP p = , then 6 ( , , ) 0,D r p tα =
r

 / 0d d tρ =  and, 
according to (2), we come to the Liouville’s theorem [4]–
[7]. It states that for conservative systems the particle 
density ρ  in the 6D phase space, the number of particles 
in the phase space volume occupied by the beam and 
hence the volume stay constant. In this case the volume is 
named the 6D normalized emittance. The volume divided 
by the factor 3( )βγ  is named the unnormalized emittance 
accordingly. The normalized emittance is invariant for 
conservative systems. 2D and 4D phase space volumes 
can be exchanged by conservative external fields. It 
follows from private examples (see e.g. [1]).  

Robinson and Liouville theorems are valid for identi-
cal particles (electrons, protons, muons and so on). The 
Robinson theorem is valid if frictional forces exist only at 
the moment of their interaction with media or external 
fields and there is no time delay between the interaction 
time and the frictional force. Excited ions have higher rest 
mass then unexcited ones and have finite lifetime. It 
means that in general case the above theorems are not   
valid for ion cooling (excited ions are not identical to 
unexcited ones and have finite lifetime). The theorems 
works well if the lifetime of excited ions is less then some 
characteristic time for the processes of the beam evolution 
determined by concrete conditions. E.g., in the case of 
particle accelerators the delay time between the moment 
of the ion excitation by a laser beam and following 
photon reemission must be less then the period of betatron 
oscillations. Otherwise, the additional cooling or heating 
of the ion beam is possible.  
     It is supposed above that the particle beam is a 
continuous media (there is no free space between 
particles). On practice it means that the distance between 
particles is much less then dimensions of any instrument, 
which is used to move a particle from a peripheral region 
of the 6D volume of the beam to the central one and that 
the instrument do not disturb another particles of the 
beam (otherwise, the stochastic cooling is possible).  

APPLICATION OF ROBINSON THEO-
REM TO PARTICLE ACCELERATORS 
The equation (2) can be applied to the beam transport 

lines, linear and circular accelerators, storage rings, 
betatrons, recirculators and so on. If the motion of 
particles of a beam in the limits of the occupied 6D 
volume is described by linear differential equations, then 

all parts of the beam density and the total phase space 
volume occupied by the beam change identically. 

If the energy losses are compensated by induction or 
RF fields in cavities of the circular machines, the average 
energy of particles is kept constant, power loss of 
particles of the beam in the limits of its phase space 
volume is a linear function of the energy, then, according 
to (2), the rate of the beam density change in these 
machines is determined by the 6D-damping increment  

6 2

1 ( ) ( )(1 ) | |
s s

Fr Fr
FrD

P Pdiv F ε ε ε ε
ε εα

ε εβ = =
∂= − = + +

∂

ur
,(3)

where ( )FrP ε  is the average rate of the particle energy 

loss due to friction, sε  is the energy of the reference 
particle. Reference particle can be synchronous particle if 
the radiofrequency accelerating field is switched on or 
some central particle if the induction accelerating field is 
used. If the increment 6Dα  is positive then in this case 
they say that 6D cooling occurs. The expression (3) can 
be negative, if the second term ( ) /FrP p ε∂ ∂  is negative 
and larger by the value then the first one (beam heating).  

Note that 6D cooling is a necessary but not sufficient 
condition for production of the high density beam in 3D 
space. Untidamping of synchrotron [8] or betatron [9] 
oscillations can occur under 6D cooling conditions. The 
emittance exchange can be used to remove the case of 
untidamping [1], [4], [9].  

The following kinds of the charged particle energy 
looses can be used for cooling: electromagnetic radiation 
losses in the external electromagnetic fields (synchrotron 
radiation, undulator radiation, backward Compton and 
backward Rayleigh scattering) and in matter (ionization 
and excitation losses, bremstrahlung radiation).  

If the energy of particles is maintained at constant level, 
( ) 0FrP p ≠ , and  ( ) / ~FrP p ε∂ ∂ ( ) /FrP p ε  then, according 

to (3), the density of the particle beam will increase by 
2.7e =  times after particles of the  beam will lose the 

energy ~ε εΔ  (e.g., synchrotron radiation damping). If 
( ) / ~FrP p ε∂ ∂  ( ) /Fr bP p εΔ  ( bε εΔ << ) then the same 

increase of the density will be after particles of the beam 
lose the energy bε εΔ = Δ , where bεΔ  is the initial energy 
spread of the beam. This case is possible for the radiative 
cooling of ion beams by the broadband laser beam [10]. 
In this case the power loss must increase with the energy 
from zero to maximal value in the limits of the energy 
spread bεΔ  (fast, enhanced, stimulated cooling) [11]-[12].  

To separate the longitudinal component sp  of the 

momentum from the transverse components xp , zp  we 
must find the closed trajectory of a reference particle, 
direct the longitudinal unit vector along the trajectory and 
direct two other transverse unit vectors in the directions 
transverse to each other and to the longitudinal one. In 
such a way we will pass on to a curvilinear coordinate 
system for particle accelerators. In this system the 6D 
increment is the sum of two transverse (radial, vertical) 
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and longitudinal increments: 6 2 2D x zα α α= + + 2 sα . The 
increments for longitudinal and uncoupled vertical 
oscillations are found without a problem by direct 
calculations and the radial one is determined from the 
equation (3). In the relativistic case:  
  1 1 1, ,

2 2 2
s s

x s s z s s
s s

P P d P P d P
d d

α α α
ε ε ε ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∂= + | − | = = |
∂

. (4) 

     The total momentum and the energy of a particle are 
coupled with its components , ,x z sp p p  by the relations 

2 2 2 2
x z sp p p p= + + , 2 2p mcε = + . That is why we could 

pass from μ -space to the new space ( , , , ,x zx p z p  
,s ε ), which is usually used in the theory of accelerators. 

We can name it the ε -space. Particles in the accelerators 
and storage rings are subjected to fast transverse vertical 
and radial betatron oscillations. Moreover they participate 
in longitudinal oscillations of two types: fast oscillations 
of momentum with the betatron frequencies in accordance 
with the equation 2 2 2 2

s x zp p p p= − −  and, if the 
accelerating radiofrequency field is switched on, slow 
synchrotron oscillations of the momentum ( )p t  and 
energy ( )tε .  

Note that frictional cooling goes through the energy 
losses of particles, particle beam can stay monoenergetic, 
its energy spread and 6D volume are equal to zero 
(particle beam is on the 6D hypersphere), but the spread 
of the longitudinal oscillations of particles will not be 
zero if the transverse emittances are nonzero.  

CONCLUSION 
The evolution of the phase space density of particle 

beams in external fields is presented proceeding from the 
continuity equation in the six-dimensional phase space. 
The Robinson theorem, was proved in an alternative way 
valid for arbitrary external fields, averaged fields of the 
beam (self-generated electromagnetic fields except 
intrabeam scattering) and arbitrary frictional forces. It 
includes particle accelerators as a special case. The limits 
of the applicability of the Robinson theorem in case of 
cooling of excited ions having a finite living time are 
presented. 
     The author thanks R.M. Feshchenko for usefull 
discussions.  
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