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Abstract 
Most of the charged particle beam shapes do not 

possess symmetry. In such cases, diagnostic measurement 
obtained in one direction is not enough to reconstruct the 
spatial distribution of the beam.  The use of intense beams 
which demands for non-interceptive diagnostic devices 
posed another challenge in measuring the beam’s spatial 
distribution. At CEA Saclay and within the DITANET 
framework, the use of tomography combined with optical 
diagnostics to develop a non-interceptive transverse 
profile monitor is under development. This profile 
monitor is presently tested on the BETSI test bench. In 
this contribution, a tomography algorithm suited for beam 
profile measurements is presented. This algorithm is 
based on the formulation of iterative Algebraic 
Reconstruction Technique (ART) problem and the 
Maximum-Likelihood Expectation Maximization 
(MLEM) for the iteration step. The algorithm is 
optimized within the limit of using 6 projections only. 
Several beam shapes are generated and then reconstructed 
computationally. Actual measurements in the BETSI test 
bench are also done to verify the tomographic 
reconstruction process. 

INTRODUCTION 
Increased average beam currents in present accelerators 

and storage rings, is a subject of great interests to the 
accelerator community. It offers many applications in 
industry, medicine and in basic researches as well. For all 
of these researches, it is a requirement to have knowledge 
about the spatial distribution of particles both at the 
transport channel and at the experimental target site. 
Hence, beam diagnostics is imperative. However, for 
intense charged particle beams, there is an increased 
specific demand for non-interceptive beam diagnostic 
devices.  Such diagnostics must not be interceptive such 
that it will not destruct the beam, and, at the same time, 
will not be destroyed by the high ion currents in the beam 
during operations. 

One of such non-interceptive diagnostics is the optical 
method of measuring profile of the beam by utilizing the 
interaction of the beam with the residual gas inside the 
vacuum chamber [1]. When a beam particle hit a gas 
molecule present inside the chamber, electrons are excited 
into an outer shell and when these electrons fall back into 
their stable lower shells, a photon is emitted from the gas 
molecule. Using cameras, the emitted light can be focused 
onto a CCD chip that can store spatial information, and, if 
coupled with a spectrometer, spectral information can 

also be stored.   In contrast to other techniques like 
multiwires which only permit measurements in only one 
direction, optical diagnostics allows multiple 
measurements of several beam projections at the same 
cross section but at different angles around the beam.  

In this contribution, optical diagnostics is incorporated 
with the tomography technique to obtain a non-
destructive reconstruction of the cross-sectional spatial 
distribution of the beam. It aims to verify the use of 
tomography for measuring the transverse profile of the 
beam. This is of advantage when dealing with beam 
shapes that are more intricate.  

TOMOGRAPHY 
Tomography is the method to reconstruct a 2D or 3D 

cross sectional image of an object given multiple flat 
scans taken from multiple angles around an object. Most 
literatures about it are in the field of medicine. In the field 
of accelerator physics and for the purposes of using 
optical diagnostics to understand the shape and the spatial 
extent of the beam from a 2D CCD image, it is necessary 
to understand and implement tomography.  

The problem is defined in the coordinate system 
 with the beam direction along the z-axis. The 

object in question is represented by , which 
represents the spatial distribution of the object in the  

 plane. The observed data taken from the 2D 
multiple images around an object is given by the 
projection integral which can be defined mathematically 
by the Radon transform [2,3]. The Radon transform 

 of a function  is the line integral of the 
values of  along the line inclined at an angle  
from the x-axis at a distance s from the origin.  

The desired computation however is an inverse 
problem. Given the projections, the unknown object must 
be computed. There are several ways of solving this. The 
2D Fourier Transform is the most common way used in x-
ray tomography. In this technique a large number of 
projections are required to be able to reconstruct the 
image.  However, for accelerator physics, it is important 
to be able to reconstruct the image in few projections. 
One way to do this is by using the ART [4]. 

The idea in ART can be considered as smearing back 
the projection intensities back to the reconstruction area. 
The reconstruction area is being set up as a matrix with 
unknowns covering the object of interest. Then algebraic 
methods are used to solve for the unknowns by modifying 
the densities iteratively in order to make the reconstructed 
projections coincide with the original projections. And 
since the number of viewing angles in diagnostic chamber 
for particle accelerators is limited by space and cost of 
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cameras, iterative reconstruction is more promising than 
the Fourier process.  

In this paper, the image reconstruction algorithm is 
based on the formulation of the ART and combined with 
the MLEM in the iteration procedure.  

TABLE TOP EXPERIMENT 
Measurements patterned from the results of Belyaev [5] 

are done to verify the tomography reconstruction 
algorithm. A He-Ne laser is expanded by a double-lens 
beam expander system. The expanded beam is then 
directed to a rotatable mask which defines the shape of 
the beam. After passing through the rotatable mask, the 
beam, which already has a defined shape, is focused to 
the vacuum chamber containing a fluorescent gas at 1 
atmospheric pressure. To avoid unnecessary reflections 
inside the chamber, the inner surfaces of the vacuum are 
covered with black opaque material and also, the whole 
setup is assembled inside a dark room. A CCD camera 
(Stingray F146 B) connected to a computer obtains the 
images of the laser beam and with Labview program, the 
profile of the image taken by the CCD camera is 
obtained. Since tomography reconstruction requires 
several profiles obtained at different angles, other profiles 
were obtained by rotating the mask to a desired angle. 
The profiles obtained at six different angles, between 0° 
to 150° with an increment of 30°, are then utilized as 
input profiles in the tomography reconstruction algorithm.  
 The result of the reconstruction of the laser beam’s 
spatial density distribution is shown in Fig. 1.  

Figure 1: The six profiles at different angles (upper left) 
are used to reconstruct the beam’s spatial distribution 
(upper right). 

In order to describe the reconstruction qualitatively, the 
discrepancy between the measured and reconstructed x- 
and y- profiles were plotted as shown in the second row 
of Fig. 1.  

In parallel with the actual measurements, reconstruction 
of test images generated numerically is also done. A 
separate code that generates test images is developed. An 
example of test image is shown in the upper left-hand 
corner of Fig. 2. The code rotates the image to preferred 
angles and then records the horizontal profile of the 
images for each of the angles. The profiles obtained are 
then used as input data on the reconstruction algorithm. 

The projection angles were distributed between 0° to 150° 
with an increment of 30° or 50°. Test images are 
reconstructed with 6 or 4 projections for the purpose of 
comparison in image quality. Initial study was made by 
the group of Belyaev where they concluded that 4-8 
projections are sufficient to reconstruct the intensity 
distribution of the beam cross section [5]. For the 
numerical simulation, each projection is composed of 513 
points corresponding to a 513 × 513 pixels in the 
reconstructed image.  

Results of the reconstruction of the numerically 
generated input image are shown in Fig. 2.  

Figure 2: The reconstructed image with four and six 
projections.  

MEASUREMENTS ON BEAM LINE 
Following the table-top experiment and numerical 

simulations, an experiment is also done in Ion Source 
Test Bench (BETSI) at CEA Saclay [6], equipped with an 
Electron Cyclotron Resonance (ECR) Ion Source. After 
extraction, a solenoid is inserted to focus the beam to the 
focal plane of the analyzing magnet. The analyzing 
magnet bends the beam over 104° with a bending radius 
of 400 mm.  

An experimental chamber with six equally spaced 
viewports along the axial direction at 90° with respect to 
the beam direction, and 6 other viewports at 30° with 
respect to the beam direction is constructed and is first 
installed in BETSI, positioned after the analyzing magnet 
and before the beam stop. Viewports oriented 30° with 
respect to the beam direction will be used for future 
Doppler shift spectroscopy measurements. In this 
contribution, only the images through the perpendicular 
viewports were acquired.   Additional gas can also be 
injected inside the chamber through a gas inlet. 

A digital CCD camera with a Firewire Interface, 
Stingray F146 B and with Fujinon HF25HA-1B objective 
is used to capture images of the beam from each 
viewport. The objective has a constant focal length of 
25mm and has an adjustable iris in the range of F1.4 to 
F22. At a distance of 180mm from the beam axis and an 
image size of 692 × 518 pixel, the field of view is 45.82 × 
34.45 mm. This in turn gives 0.066 × 0.067 mm per pixel 
size. 
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