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Abstract 
In this contribution, we present measurements of the 

beam potential performed after the extraction region of 
ECR ion sources in dependence of the base pressure in 
the beam line and other parameters, e.g. total extracted 
current, using a Retarding Field Analyzer (RFA). If the 
beam current and the beam profile are known, it is 
possible to infer the level of space-charge compensation 
from the measured beam potential distribution. 
Preliminary results are discussed and compared to 
simulations. 

INTRODUCTION 
Space-charge compensation in beam lines due to the 

interaction of the beam with residual gas molecules is a 
well-known phenomenon for high current injector beam 
lines. When the beam interacts with the residual gas in the 
beam line, electrons are separated from gas molecules by 
charge-exchange processes and accumulate inside the 
beam envelope, while the ions created in the process are 
expelled by the positive beam potential. This lowers the 
space-charge potential of the beam and is called space-
charge compensation or - neutralization. In [1], 
Soloshenko investigates the simple case of space charge 
compensation for the stable stationary beam. A steady-
state is defined for the beam, where the rates of electrons 
created/entering the beam and leaving the beam are equal. 
Electrons captured inside the beam may gain enough 
energy to leave through Coulomb collisions with the 
beam ions themselves and through collective processes. 
Considering also the energy balance of the electrons, 
Soloshenko arrives at the following expression for the 
potential difference of beam center and and beam edge 
(  = center - edge): 

 

 

 
Where  = 2  with  a Coulomb logarithm, r0 the 

beam radius, i the gas ionization potential, M the beam 
ion mass, eV0 the beam ion energy, vi/+ the plasma 
ion/beam ion velocities, i/e the ion/electron originating 
cross-sections and n0/+ the residual gas/beam ion 
densities. By investigating the balance of the two terms in 
the sum he concludes that for low pressures we can 
expect a decrease in  with increasing pressure, whereas 
for high pressure,  reaches its minimum and becomes 
essentially independent of the pressure (see [1] for more 
details). 

In addition, ions hitting apertures, charged electrodes, 
ion optics elements and beam line coatings can influence 
the creation and loss of compensation electrons greatly 
and have to be taken into consideration. 

For beam lines using mostly magnetic focusing 
elements and for pressure around 10-5 Torr, almost full 
compensation has been predicted [1] and observed [2]. 
However, due to the low pressure (typically 10-7 to 10-8 
Torr) required for the efficient transport of high charge 
state ions, ion beams in ECRIS injector lines may be only 
partly neutralized and space charge effects may be 
present. With the dramatic performance increase of the 
next generation Electron Cyclotron Resonance Ion 
Sources it is possible to extract tens of mA of beams from 
ECR plasmas [3]. In this high current regime, non-linear 
defocusing effects due to the space-charge potential of the 
beam become more and more important. In order to 
develop a realistic simulation model for low energy beam 
transport lines, it is important to estimate the degree of 
space charge compensation along the Low Energy Beam 
Line (LEBT). 

HARDWARE 
ECR Ion Sources 

This type of ion source is described in great detail 
elsewhere [4]. One point to be made, though, is that the 
plasma from which the ions are extracted is confined by a 
strong magnetic field, which is usually a superposition of 
a solenoid field (longitudinal confinement) and a sextu-
pole field (radial confinement). For special applications, 
however, (e.g. high currents of protons) it is preferable to 
use only the solenoid magnets (e.g. LEDA source, see 
below). In this context it is important to mention that the 
sextupole field has great influence on the shape and 
behavior of the extracted beam. While beams from 
sources using only solenoids are typically radially sym-
metric (uniform or Gaussian beam profile), ECR beams 
from sources using sextupoles exhibit a triangular or star-
shaped cross-section [5, 6]. The triangular shape and 
intrinsic sextupole moment of the beam has been subject 
to research for many years now and has to be taken into 
account when designing the LEBT of an ECRIS. It might 
also influence the measurement of beam neutralization 
with an RFA as will be seen later. 

SuSI 
The Superconducting Source for Ions is one of the 

injector sources of the Coupled Cyclotron Facility at the 
National Superconducting Cyclotron Laboratory (NSCL) 
at Michigan State University. As the name suggests, the 
magnetic fields are provided by a set of superconducting 
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magnets. The position (about 46 cm downstream of the 
extraction aperture) at which the measurements have been 
conducted can be seen in figure 1. The Einzel Lens that is 
used to match the SuSI beams into the analyzing beam 
line section was turned off for these measurements. 
Oxygen and argon beams with total extracted currents of 
up to 3 mA were used in these measurements. 

 

 
Figure 1: RFA in SuSI LEBT – diagnostic box 1. The 
Einzel Lens was turned off during measurements. 

Artemis A 
Artemis A is the second injector source used at the 

NSCL and is based on the design of the AECR-U source 
at Lawrence Berkeley National Laboratory [7]. The 
solenoid magnets are room temperature magnets and the 
radial confinement field is provided by a permanent 
magnet sextupole [8]. Oxygen and argon beams with total 
extracted currents of up to 2.8 mA were used in these 
measurements. The RFA was mounted in a 6-way cross in 
a vertical beam line between the source and the analyzing 
magnet, right after an electrostatic quadrupole doublet, 
looking at the beam from the side. The 6-way cross also 
held a faraday cup for measuring the beam current at that 
position and a turbo molecular pump as well as a needle 
valve for adjusting the beam-line pressure. 

LEDA Source 
Developed at Chalk River Laboratories, a high current 

proton source was extended as the Low-Energy 
Demonstration Accelerator (LEDA) injector source in 
Los Alamos and recently moved to the NSCL, where the 
presented measurements have been conducted. The 
LEDA source does not have a sextupole magnet and thus 
produces to first order round beams. Microwave powers 
of 500 to 700 W were used to produce 2-10 mA proton 
beams with a small contribution of H2 ions. The ratio of 
H+ to H2

+ for this source is measured to be ~9:1 [9]. The 
RFA was mounted in a box approx. 50 cm after the 
plasma aperture looking at the beam from the side.  

Retarding Field Analyzer (RFA) 
The RFA consists of three parallel meshes housed in a 

grounded box with a set of two apertures for collimation 
of the secondary ions upon entering the detector (see 
figure 2). Mesh 1 is grounded at all times and helps provi-
ding a uniform retarding field together with mesh 2 which 
is set to the retarding potential ( -100 V to +200 V). Mesh 
3 is typically set to -450 V and acts as an electron 

repeller, both to keep electrons from the outside out and 
to turn back electrons produced upon impact of the 
measured ions on the collector. The collector is a copper 
plate. 

 

 
Figure 2: Cut isometric view of the RFA. 

Extensive simulations using SIMION 8.1 [10] have 
been undertaken in order to determine the theoretical 
resolution of the device. In these simulations randomly 
generated monoenergetic particles filling the maximum 
acceptance of the detector were sent into the detector and 
the measured energy distribution was analyzed. The 
FWHM of the distributions were ~0.55 eV with a base 
width of 1.2 V. Together with a stability of the power 
supplies of better than 0.1 V a conservative estimation of 
the resolution of <1 eV can be made.  

Alternative designs were considered, like giving the 
meshes a curvature to ensure maximum energy loss even 
for particles entering under an angle, but simulations 
showed negligible change in the resulting spectra. 

Initial measurements without the double aperture sys-
tem showed long tails on both, the high and the low 
energy side. Those could be mostly suppressed by adding 
the apertures, albeit thereby reducing the maximum 
current reaching the collector plate. 

Data acquisition is managed by a computer program 
setting the voltage on mesh 3 and reading the current 
from an in-house fabricated BCM (beam current monitor) 
via EPICS/PLC communication. 

MEASUREMENTS 
Analysis Method 

For the round beams from the LEDA source, we 
assume that the beam is a uniformly charged cylinder and 
the ions are created inside this cylinder through charge 
exchange processes. They are then expelled by the 
positive beam potential and carry a kinetic energy 
depending on the radial distance from the beam center at 
the time of their separation from the gas molecule. This is 
a good approximation, as has been seen in previous 
measurements with a similar device [2]. The potential 
difference between center and edge of the beam is then 
given by: 
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Where I is the total beam current, 0 the vacuum per-

mittivity, c the velocity of the beam, and f the neutrali-
zation factor between 0 and 1.  

The potential difference  can be obtained from the 
RFA spectrum by taking the derivative dI/dV which 
yields the energy distribution of the ions.  is then given 
by the base width of the distribution (method 1) minus the 
base resolution of 1.2 V (method used in [2]). On the 
other hand, at the low currents that we are measuring, 
other effects like the initial random motion of the gas 
molecules, collisions, or the presence of a beam halo can 
add to the spectrum and round off the edges or even 
produce long tails. This widens the base of dI/dV. As a 
second method of analyzing the spectra, we suggest 
fitting with three straight lines and taking their crossing 
points as center and edge (method 2). An example of both 
methods for a typical spectrum can be seen in figure 3.  

 

 
Figure 3: LEDA, Example Analysis of a LEDA ion 
source neutralization spectrum. The solid blue line is the 
normalized spectrum, the dotted line is dI/dV and the 
dashed red lines are the fit according to method 2. Method 
1 would use the base width of dI/dV as . meth.1 = 4.6 
V, meth.2 = 3.8 V and fe1 = 78.4%; fe2 = 83.0%.  

Measurements with Artemis A 
The first measurements were obtained on the Artemis 

A line. In this setup, the RFA was operated with a larger 
aperture (r = 1.1 cm) and without the second collimation 
aperture. Following [2] we tried to relate the saturated 
RFA current (IRFA)s to theoretical predictions based on the 
1-D continuity equation: 

 

 
 
with ra the RFA entrance aperture radius (1.1 cm), d the 

distance from aperture to beam axis (10 cm), i the ion 
production cross-section, ng the gas density, T the grid 
material transparency, and I the ion beam current. The i 
were calculated for the different beam components (multi-
species beam) individually according to an empirical 
formula [11]. Predictions compared to measurements can 

be found in figure 4. A transparency factor of T = 0.4 
(40% transmission) gave good agreement. 

 

 
Figure 4: Artemis: Oxygen beam, pressure variation. 

The neutralization values obtained with the afore-
mentioned analysis method are also displayed in figure 4. 
They are distributed around 0 % with an overall tendency 
to increase slightly with pressure, indicating that in this 
region of the beamline no space charge compensation 
occurs. This might be due to the presence of the 
electrostatic quadrupole doublet, although the 
measurement was taken approx. 20 cm after the exit of 
the quadrupole. One of the values is slightly negative, 
stemming from the  in the spectrum being larger than 
the theoretical prediction for the completely uncompen-
sated beam. See SuSI measurements below for a dis-
cussion. 

Measurements with the LEDA Source 
Measurements in the LEDA source were taken with 

both RFA apertures in place (as depicted in figure 2) and 
their radius decreased to 0.88 cm. The distance d is now 
31.7 cm.  The comparison of saturation current with 
theory is shown in figure 5. Here we had to decrease the 
transmission factor to T = 0.1 to match the experimental 
values. This is a factor 4 lower than for Artemis without 
the inner aperture. Several reasons are conceivable: 
• A known misalignment of the LEDA beam. 
• Longitudinal velocity components of the created  

ions (see Measurements with SuSI below for 
discussion). 

• Aspect ratio of the ARTEMIS beam. 
• Uncertainties of the absolute beam line gas pressure 

and composition. 
But further investigation is necessary.  

Despite the small collector currents, it was possible to 
obtain neutralization spectra for different beam currents 
(see figure 6) and different beam-line pressures (see 
figure 7). No significant change in neutralization with 
increasing current was observed. The neutralization for 3-
10 mA lies between 60% and 80% (depending on the 
analysis method) at a pressure of 4.2E-6 Torr.  

This is lower than the reported neutralization factors for 
high current operation with the LEDA source, but as 
shown in figure 8 the neutralization factor increases to 
89% at higher beam line pressure (which are present at 
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