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Abstract 
Exact expressions of longitudinal and transverse 

resistive-wall impedances for a round pipe with a finite 
thickness were analytically obtained to accurately 
evaluate effects of resistive-wall wakefields on energy 
recovery linacs(ERLs). Parasitic loss in an ERL vacuum 
chamber due to the longitudinal impedance was evaluated 
and found to be serious compared with 3rd generation SR 
sources because of the shorter bunch length. It was also 
shown by the calculation result of longitudinal resistive-
wall impedance of a two-layer round pipe that copper 
coating is effective for reducing the parasitic loss of a 
stainless steel(SS) chamber. Transverse resistive-wall 
wake functions of round pipes were numerically 
calculated using the exact impedance expression to 
simulate transverse multi-bunch beam motions due to 
resistive-wall wakefields in ERLs. Possibility of resistive-
wall beam breakup(BBU) in the compact ERL and in a 
long undulator chamber of a 5-GeV ERL was discussed 
based on simulation results. 

INTRODUCTION 
In ERL-based synchrotron radiation(SR) sources, high-

current and short-bunch beams are circulated. Such a 
beam can generate strong wakefields in resistive-wall 
ERL components and the wakefields seriously affect the 
components and the beam itself. Transverse multi-bunch 
beam breakup due to the resistive-wall wake was already 
studied with analytical and simulation approaches using 
the conventional expression of the resistive-wall wake 
function[1][2]. Although the study results implied that the 
beam position displacement due to the resistive-wall wake 
infinitely increases with time, it was also pointed out that 
the conventional expression of the resistive-wall wake 
function is valid only in a limited time range[2]. In this 
paper, exact expressions of the longitudinal and transverse 
impedances are derived to correctly estimate the resistive-
wall impedances and their effects on ERLs. Transverse 
multi-bunch beam motions are simulated with the exact 
wake functions. Furthermore parasitic loss in a vacuum 
chamber due to the longitudinal resistive-wall wakefields 
is also evaluated. 

EXACT EXPRESSIONS FOR RESISTIVE-
WALL IMPEDANCES 

Longitudinal Impedance 
An exact expression of the longitudinal resistive-wall 

impedance (per unit length) of a round pipe with an inner 

radius b and a thickness d was analytically derived as 
follows:  
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Here σ, ε0, µ0, c, i, ω, and δ are the electric conductivity 
of the pipe, the permittivity and permeability of vacuum, 
the velocity of light, the imaginary unit, the angular 
frequency and the skin depth of the pipe, and J0, J1, N0 
and N1 are the 0th-order and 1st-order Bessel functions of 
the 1st and 2nd kinds, respectively. The permittivity and 
permeability of the pipe are assumed to be equal to or 
approximated by those of vacuum. The sgn(ω) means the 
sign of ω. If the pipe thickness becomes infinity, the 
expression is rewritten as Eq. (2) with the 0th-order and 
1st-order Hankel functions of the 1st kind, H0

(1) and H1
(1). 
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If one considers the frequency range satisfying the 
conditions of

 

€ 

λ b >> 1, λ >> ω / c , λ >> bω 2 / c2 , 
the conventional impedance expression of Eq. (3) is 
derived from Eq. (2). 
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Here Z0 is the impedance of vacuum. 
Figure 1 shows the real parts of the resistive-wall 

impedances of stainless steel(SS) pipes with b=8 mm and 
σ=1.4×106 Ω-1m-1 calculated from Eqs. (1) and (2). For 
comparison, the conventional expression of Eq. (3) is 
shown in the figure. The real parts of the exact 
impedances have two kinds of cut-offs, low and high 
frequency cut-offs. The high-frequency cut-off depends 
on only the pipe radius. On the other hand, the low-
frequency cut-off depends on both pipe radius and 
thickness. Only in the intermediate frequency range, the 
impedances are approximated by Eq. (3) as shown in Fig. 
1.  
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Figure 1: Longitudinal resistive-wall impedances of round 
pipes with an inner radius of 8 mm and thicknesses of 1, 
10, 100 mm and infinity. The conventional impedance 
expression is also plotted by a black dotted line. 
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Figure 2: Longitudinal resistive-wall impedances of Cu-
coated stainless steel(SS) pipes with an inner radius of 8 
mm and Cu-coating thicknesses of 1, 10, 100 µm. The 
impedances of pure Cu and SS pipes are also plotted by 
blue and green dotted lines. 

 
Longitudinal resistive-wall impedance of a two-layer 

round pipe was also derived as Eq. (4).  
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Here b, d, σ1,2 , δ1,2 are the inner radius of the pipe, the 
thickness of the inner layer, the electric conductivities and 
the skin depths of the inner and outer layers. The 
thickness of the outer layer is assumed to be infinite. 
Definitions of the other parameters are the same as those 
of the one-layer pipe in Eq. (1). 

Figure 2 shows the real parts of the resistive-wall 
impedances of copper(Cu)-coated SS pipes with an inner 
radius of 8 mm and Cu-coating thicknesses of 1, 10 and 
100 µm calculated from Eq. (4). The Cu coating 
corresponds to the inner layer of the two-layer pipe and 
the electric conductivity of Cu is 5.9×107 Ω-1m-1. For 
comparison, the impedances of pure Cu and SS pipes with 
the same inner radius are shown in the same figure. As 
found in Fig. 2, the impedances of Cu-coated SS pipes 
agree with that of the pure SS pipe at low frequencies and 
the pure Cu pipe at high frequencies. The frequency 
where the transition from the SS to Cu impedance occurs 
depends on the Cu-coating thickness.  

Transverse Impedance 
An exact expression of the transverse resistive-wall 

impedance of a round pipe with an inner radius b and a 
thickness d was derived as 
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Parameter definitions are the same as described for Eq. 
(1). J2 and N2 are 2nd-order Bessel functions of the 1st and 
2nd kinds, respectively. If the pipe thickness becomes 
infinity, the expression is rewritten as Eq. (6) with the 1st-
order and 2nd-order Hankel functions of the 1st kind, H1

(1) 
and H2

(1).
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The conventional expression is derived from Eq. (6) on 
the conditions of 

€ 

λ b >> 1, λ >> ω / c , λ >> bω 2 / c2  
as follows: 

€ 

Z⊥ (ω ) =
Z0δ
2πb3

sgn(ω )− i{ }   (7)
 
 

Figure 3 shows the real parts of the transverse resistive-
wall impedances of SS pipes with b=25 mm calculated 
from Eqs. (5) and (6). For comparison, the conventional 
expression of Eq. (7) is shown in the figure. The real parts 
of the transverse impedances also have low and high 
frequency cut-offs, each of which has a very similar 
dependency on pipe radius and thickness to that of the 
longitudinal one. It should be noted that, as the frequency 
decreases, the real parts of the exact resistive-wall 
impedances go down to zero, while that of the 
conventional expression continues to increase. 
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Figure 3: Transverse resistive-wall impedances of round 
pipes with an inner radius of 25 mm and thicknesses of 1, 
10, 100 mm and infinity. The conventional impedance 
expression is also plotted by a black dotted line. 

PARASITIC LOSS DUE TO 
LONGITUDINAL WAKEFIELDS 

Loss Factor and Parasitic Loss 
Loss factor of the resistive-wall pipe is expressed as Eq. 

(8) with the longitudinal impedance and the bunch length 
σt when the electron distribution of the bunch is Gaussian. 
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k =
1
π

Re{Z// (ω )}0
∞
∫ exp − σ tω( ) 2{ }dω   (8) 

If the bunch length becomes shorter, the high-frequency 
cut-off caused by the exponential term in Eq. (8) shifts to 
higher frequency and as a result the loss factor becomes 
higher. Since ERL-based SR sources have much shorter 
bunches than the storage-ring based SR sources, they have 
much higher loss factors. 

Parasitic loss in a round pipe with the length L is 
expressed with the loss factor as 

€ 

PRW = kQb
2 fbL = kI 2L / fb    (9) 

Here Qb, fb, and I are the bunch charge and the repetition 
frequency of bunches and the average beam current. The 
loss factor and parasitic loss per unit length in each of SS 
pipes with radii of 8 and 3 mm are calculated from Eqs. 
(8) and (9) for a typical ERL-based SR source (σt=1ps, 
I=100mA, fb=1.3GHz): 
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k = 2.73(7.11) [V/pC/m] (b = 8(3)mm) 

€ 

PRW / L = 21.0(54.7) [W/m] (b = 8(3)mm) 
The loss factor and the parasitic loss are also calculated 
for SPring-8 (σt=13ps, I=100mA, fb=0.045GHz) as 

€ 

k = 0.0562(0.150) [V/pC/m] (b = 8(3)mm) 

€ 

PRW / L = 13.3(35.3) [W/m] (b = 8(3)mm) 
The typical ERL-based SR source has higher parasitic 
loss than SPring-8 (and than most of the existing 3rd 
generation SR sources) because of the higher loss factor.  

Reduction of Parasitic Loss by Copper Coating 
If a vacuum chamber is made of a very good electric 

conductor such as Cu for reducing the loss factor, eddy 
currents of the chamber can be considerable when the 
magnetic field of a magnet or insertion device is changed 
there. Cu coating is expected to reduce the loss factor of a 
SS vacuum chamber without significantly increasing 
effects of the eddy currents. As shown in Fig. 2, only 1-
µm Cu coating can suppress the dominant high frequency 
component in the longitudinal impedance of the SS pipe. 
The loss factor and parasitic loss of the Cu-coated pipe 
are numerically calculated from Eqs. (8) and (9) as 

€ 

k = 0.404(1.07) [V/pC/m] (b = 8(3)mm) 

€ 

PRW / L = 3.11(8.26) [W/m] (b = 8(3)mm) 
The obtained parasitic loss is about one seventh of that of 
the pure SS pipe and equal to that of the pure Cu pipe. 
This calculation result confirms the effectiveness of Cu 
coating in reducing the parasitic loss of a SS vacuum 
chamber. 

BEAM BREAKUP DUE TO TRANSVERSE 
WAKEFIELDS 

Wake Function  
The transverse wake function is expressed with the 

transverse impedance as in Eq. (10). 
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If Eq. (7) is used in Eq. (10) as the impedance, the 
conventional expression for the transverse wake function 
of a round pipe is obtained as Eq. (11), which is valid only 
for the condition of (12). 
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πb3 t1 / 2
cZ0
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2 , t << 2πµ0σd
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Exact wake functions were numerically calculated from 
Eqs. (5) and (10). Red solid lines in Figs. 2(a) and 2(b) 
show the calculated exact wake functions for two 
different SS pipes with inner radii of 25-mm and 3-mm 
radius and a thickness of 1 mm. A black dotted line and a 
blue solid line in each figure show the conventional wake 
function of Eq. (11) and the ratio of the exact to the 
conventional wake function, respectively. As clearly 
shown by the ratio of the exact to the conventional wake 
function, each exact wake function more quickly and 
substantially decreases compared with the conventional 
wake function. 
 

Proceedings of ERL09, Ithaca, New York, USA JS205

Optics & Beam Dynamics

87



0

2x1010

4x1010

6x1010

8x1010

1x1011

1.2x1011

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100

Exact
Conventional

Ratio

W
ak

e f
un

ct
io

n 
W

 [V
/C

/m
2 ]

R
atio

Time t[μs]

(a)

0

1x1013

2x1013

3x1013

4x1013

5x1013

6x1013

7x1013

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100

Exact
Conventional

Ratio

W
ak

e f
un

ct
io

n 
W

 [V
/C

/m
2 ]

R
atio

Time t[μs]

(b)

 
Figure 4: Exact transverse wake functions of two different 
SS pipes (red solid lines): (a) b=25mm and d=1mm and 
(b) b=3mm and d=1mm. black dotted and blue solid lines 
indicate the conventional expression and ratio of the exact 
to the conventional wake function, respectively. 

Equation of Motion  
The equation of transverse motion for the M-th electron 

bunch injected into an ERL under the resistive-wall wake 
is as follows:  
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yM ′′(s)+ K(s)yM (s)= 0 (M = 1)   (13) 

€ 

yM ′′(s)+ K(s)yM (s)= h(M − N )yN (s)
N =1

M −1

∑ (M ≥ 2) (14) 
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h(M )= eIτ B
E

W⊥ (Mτ B ), I =
eNB

τ B
  (15) 

Here K, e, NB, E and τB are the external focusing, the 
electron charge, the electron number per bunch, the 
electron energy and the time separation between bunches. 
The right-hand term of Eq. (14) means a transverse kick 
due to the resistive-wall wake. Since the bunch number M 
can be replaced with t/τB for M >> 1, the transverse 
position yM of the M-th bunch is represented as a function 
of the time t and the longitudinal position s: 

€ 

yM (s)→ y(t,s), t ≅ Mτ B M >> 1( )  

Hereafter y(t,s) or y is used as the transverse beam 
position in place of yM. 

Resistive-Wall BBU Simulation 
Based on Eqs. (13) to (15), resistive-wall BBU 

simulations in the compact ERL[3] were performed. 
Figure 5 shows layout of the compact ERL and the 
simulation path. The simulation start and end points are 
just after the acceleration and just before the deceleration 
due to accelerating cavities in the two superconducting 
(SC) cryomodules as shown in Fig. 5. The path length L 
between the two points is 55.44 m. In the simulations, 
effects of the magnet fields were not considered. The 
electron beam was assumed to have an energy of 60 MeV, 
a repetition rate of 1.3 GHz and an average beam current 
of 100 mA (a bunch charge of 77pC). All the bunches 
were injected with an initial position offset y0 at the 
simulation start point. The transverse beam position y can 
always be normalized by y0. 
 

Injector section

Dump section

2nd SC module 1st SC module

Simulation start Simulation end

e-
L=56.44m

 

Figure 5: Layout of the compact ERL and the simulation 
path. 

 
First the vacuum duct of the compact ERL was assumed 

to be a round SS pipe with b=25mm and d=1mm. The 25-
mm radius is standard for the compact ERL vacuum ducts. 
Figure 6(a) shows the simulation result of the transverse 
beam motion for this SS pipe. The transverse beam 
position y at the simulation end point is increased with 
time and then saturated to 2 % of y0 in a short time. In this 
case, effects of the resistive-wall wake are not serious. On 
the other hand, when the conventional wake function is 
used in the simulation, the transverse position is not 
saturated and increased infinitely with time. But this is not 
true. It is essential to use the exact wake function for 
correctly studying the resistive-wall BBU. Next the 
vacuum duct was assumed to be a round SS pipe with b=3 
mm and d=1 mm. Figure 6(b) shows the simulation result. 
Although the transverse beam position is also saturated, it 
is increased up to 28 times of y0. In this case, the beam 
hits the pipe when the initial position offset is larger than 
110 µm, and the resistive-wall BBU can easily occur. 
Generally, when the beam energy is low and the pipe is 
very narrow and long, the resistive BBU becomes serious. 

Finally transverse beam motion was simulated in a long 
undulator vacuum chamber (b=3 mm, d=1 mm) of a 5-
GeV ERL SR source with a repetition rate of 1.3 GHz and 
an average beam current of 100 mA. The length of the 
undulator vacuum chamber was considered up to 100 m. 
Effects of magnetic field of the undulator was not 
considered. Figures 7(a) and 7(b) show the simulated 
transverse beam position at the exit of the 100-m chamber 
as a function of time and the dependence of the saturated 
position on the chamber length (at t=32.3 µs). Since the 
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beam energy is high, the transverse beam position is 
saturated to about 30 % of y0 even for the chamber length 
of 100 m. The beam position displacement becomes 
smaller when the chamber length is shorter as shown in 
Fig. 7(b). However the assumed 1-mm thickness of the 
chamber is thinner than the ordinary one and the effective 
thickness including the surroundings such as undulator 
itself may have to be considered. Thus it is practically 
necessary to simulate transverse beam motions in thicker 
chambers 
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Figure 6: Simulated transverse beam position y 
normalized by y0 in the compact ERL for SS pipes: (a) 
b=25mm and d=1mm and (b) b=3mm and d=1mm. Blue 
broken lines indicate simulation results using the 
conventional wake function. 

SUMMARY 
Exact expressions of longitudinal and transverse 

resistive-wall impedances of round pipes were obtained in 
order to correctly study effects of the resistive-wall 
wakefields. It was shown by calculations using the 
longitudinal impedance expressions that the parasitic loss 
of an ERL-based SR source can be higher than those of 3rd 
generation SR sources and at the same time that Cu 
coating can effectively reduce the impedance of a SS 
vacuum chamber. Based on the exact wake functions 
calculated from the transverse impedance expression, 
transverse beam motion was simulated for the compact 

ERL and an undulator chamber of a 5-GeV ERL and as a 
result it was found that the transverse beam position 
displacement due to the resistive-wall wakefields is 
saturated in a short time and does not continue to increase 
infinitely. The maximum position displacements in the 
compact ERL are 0.02 and 28 times of the initial position 
offset for the 1-mm thick SS vacuum pipes with 25 and 3 
mm radii, respectively. The resistive-wall BBU is serious 
in the latter case and not in the former case. In the SS 
undulator chamber with 3-mm radius and 1-mm thickness 
of the 5-GeV ERL, the maximum position displacement 
was 30 % of the initial position offset even for 100-m 
chamber length because of the higher energy. Further 
simulations in thicker vacuum chambers are needed for 
more practical situations.  
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Figure 7: Simulated transverse beam position y 
normalized by y0 in an undulator SS vacuum chamber: (a) 
dependence on time at Lu=100 m and (b) dependence on 
chamber length at t=32.6 µs. 
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