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Abstract
Precise dumbbell fabrication is a critical step in the man-

ufacture of multi-cell SRF cavities. The resonant frequency

of each individual half-cell can be determined by perturb-

ing the welded dumbbell and measuring the TM010 0- and

π-mode. A correction to a previously derived formulae for

π-mode frequency of each individual half-cell is presented

and compared to SLANS simulations. The RF fixture and

data acquisition hardware was designed and validated dur-

ing 7-cell cavity fabrication. The system comprised of a

mechanical press with RF contacts, a network analyzer, a

load cell and custom LabVIEW and MATLAB scripts.

INTRODUCTION
Production of the first superconducting cavities for the

Cornell University Energy Recovery Linac (ERL) is com-

plete. In order to minimize cavity tuning, a mid-process

quality control step is introduced during the cavity fabri-

cation when the half-cells (or cups) are welded together to

form a dumbbell”. Variability in the raw niobium, deep-

drawing and weld shrinkage results in increased deviations

in the dumbbell shape. These errors can be compensated

by fabricating cups with an extended equators, determining

the supplementary length using frequency measurements

and, finally, machining each equator to the target length

and hence frequency. We used the wealth of SC cavity ex-

perience published by DESY and JLab [1, 2, 3]. Both labs

used measurement fixtures with a perturbing body to iden-

tify dumbbell asymmetry. There are no direct references

in the DESY publications of how this asymmetry is used

to define cup frequencies, but in the JLab publication the

measured frequencies with and without perturbation were

used to determine the individual π-modes of the cups.

CALCULATION OF HALF-CELLS
FREQUENCIES FROM DUMBBELL

MEASUREMENTS
The formula for the frequencies of two coupled oscilla-

tors used by [3] is derived in [4, 5]:
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with the substitution
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Here “0” and “π” denote the 0-mode or π-mode respec-

tively and half-cells are distinguished by their location in

the fixture with indices “U” for up and “D” for down. Fre-

quencies measured with the perturbation are additionally

marked with the index “P”. One can see that both (1) and

(2) are asymmetric relative to a swap of indices “U” and

“D”. Analysis of the derivation of the formula in [4] shows

that there should be R2 in the denominators of (1):
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Now, the formulae in (3) are symmetric if R in (2) changes

its sign when the dumbbell is turned upside-down. How-

ever, this can happen only if both right components in (2)

are close to a unity:
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This, in its turn, can happen when the shift caused by the

extra length of the cell is less than the shift due to pertur-

bation.

One could transform the formula for R so that it would

be symmetrical, e. g. by taking a mean arithmetic of R and

−R′, or using an expansion by the small parameter men-

tioned above. But the original formula (2) is rather com-

pact and the transformed formula would be presumably

more cumbersome and hardly more accurate. A verifica-

tion of (2) and (3) was done with SLANS [6] using a dumb-

bell with pre-defined equator lengths. We assume SLANS

gives exact frequency values of a dumbbell with and with-

out perturbations. We can also determine the relationship

“
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Figure 1: Simulation of a dumbbell with extra lengths 0

and 1 mm.

Figure 2: Extra length calculated with Formula.

between the extra equator length and frequency, commonly

referred to as the trimming parameter, t. In our case, we

determined that t = 5.1 MHz/mm. Knowing the frequency

of an “ideal” cup, or the target frequency, ftarget, we can

determine the extra equator lengths

ΔU =
ftarget − f∗

π,U

t
, and ΔD =

ftarget − f∗
π,D

t
(5)

to be trimmed. SLANS outputs frequencies for a dumbbell

of known length, thereby giving us a means of validating

formulae (3). We can also analyze how measurement er-

rors of the dumbbell frequencies influence the accuracy of

the found extra length. For this purpose, we can generate

random values of frequencies around the values calculated

by SLANS and use again the formulae (2) and (3) but now

for 6 arrays of “measured” frequencies. Repeated measure-

ments show that the standard deviation of each resonant

frequency is about σ = 10 kHz. Let the dumbbell have an

extra lengths on one cup only: Δ1 = 1 mm, Δ2 = 0. The

perturbation used in this calculation was such that the fre-

quency shift of the π-mode when inserted from the “ideal”

side (Δ2 = 0) is 60 kHz to 2.1 MHz, Fig. 1.

One can see that very small perturbations lead to uncer-

tainty of extra length due to the errors of measurements.

Conversely, large perturbations do not reproduce the exact

extra lengths as calculated with (5).

We can treat the cup with the extra length Δ1 = 1 mm as

an “Upper” or “Lower” cup. The choice of the cup location

is conditional. R changes its sign when the dumbbell is

turned over but also slightly changes its absolute value. The

values of extra lengths calculated for these two possibilities

are shown in Fig. 2.

We will have practically the same graph if Δ1 =
2 mm, Δ2 = 1 mm (the numbers on the ordinate axis will

increase by 1). Therefore, we conclude that the error is al-
ways smaller if the cup with bigger deviation of the π-mode
is taken as the lower cup. As is seen from the graph, the

accuracy is improved by a factor of two.

If the cups have similar dimensions, this difference be-

tween frequencies defined with swapped upper and lower

cups becomes small (no difference if R = 0).

A DUMBBELL MEASURING FIXTURE

To measure the resonant frequencies of a fabricated nio-

bium dumbell, a fixture with supporting hardware and soft-

ware was constructed, Fig. 3. The system was inspired by

the JLab system, with the most notable difference being

the operating frequency (1300 MHz instead of 1500 MHz)

[3]. The fixture was designed to accommodate completed

end group measurements. In the case of end groups, no

perturbation was used since the cavity was comprised of

a single half-cell. Two feedthroughs with antennas were

placed in the upper and lower plates, and the RF measure-

ment was done in transmission. For the end group, one

antenna was replaced by a flexible conductor such that it

was easily inserted into the cavity. In each case, the an-

tenna length was trimmed such that the cavity was heavily

undercoupled with a Qext ≈ 106, giving Ql ≈ Q0.

The measurement system consists of a HP85047A net-

work analyzer (NA), a RF dumbbell fixture with copper

contact fingers, and a Transducer Techniques load cell with

analog readout. The NA and load cell were connected to

a LabVIEW program which logs the frequency (f0), qual-

ity factor (Q0) and applied force. Q0 and f0 were deter-

mined by fitting the amplitude of S21 to the Lorentzian

function while accounting for a constant direct transmis-

sion between antennas. LabVIEW was choosen to increase

the measurement accuracy while simplifying the measure-

ment and processing procedure.

The six measured frequencies comprised the 0 and π-

mode, with and without perturbation in the upper and lower

half-cells. These values were written to a file and then pro-

cessed using MATLAB. The script calculates the individ-

ual π-mode frequencies according to the modified formu-

lae (3). The program recognizes which half-cell has the

biggest π-mode deviation and assigns this cup as ’lower,’

in spite of its physical location. The program also incor-

porates a correction for ambient conditions: humidity, tem-

perature and atmospheric pressure [7].

The value of the frequency perturbation should be bigger
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Figure 3: Dumbbell measuring fixture.

than the error in measurement (10 kHz) but less than the

difference between the 0 and π-mode frequencies (about 26

MHz). We have chosen our perturbation such that Δf ≈
0.5 MHz. The perturbing body is a cylinder 3.175 mm in

diameter with a spherical top, and the total length of 6.5

mm. In order to guarantee reliability, the perturbation was

fastened with a torque wrench to 10 inch·lb.

To obtain a reliable RF contact at the Nb/Cu joint,

the fixture must compress the dumbbell between copper

plates. The mechanical press comprised of linear bearings

mounted on aluminum plates, sliding on case-hardened

shafts. The press was manually driven by a 1-inch ACME

screw. ANSYS simulations show that the force applied to

the dumbbell should be kept below 350 lbs, in order to pre-

vent inelastic deformation. Therefore, our operating pres-

sure was 300 lbs. Plastic deformation will affect the res-

onant frequency of the cavity, but a linear extrapolation to

zero pressure of the f0 versus F curve found this devia-

tion to be neglibible compared to our machining tolerance.

To overcome the dry-contact friction between components,

a small mechanical vibrator was attached to the fixture. It

was also helpful to gently rub the niobium dumbbell against

the copper contact using a circular motion. To exclude the

copper contamination of the niobium, a 30 minute nitric

acid etch of the equators was performed prior electron-

beam welding.

These measures resulted in Q0’s between 5000 and

7000. The theoretical value simulated in SLANS was about

7500 for both 0- and π-modes, given our geometry and ma-

terial. We assumed that a Q0 greater than 5000 indicates

a reliable RF contact. Using the methods outlined above,

we demonstrated repeatable frequency measurements with

σ=10kHz, regardless of cavity orientation or re-insertion.

CONCLUSION
Dumbbell cavities for the Cornell ERL multicell cavity

were measured in a measuring fixture constructed for this

purpose to determine equator trimming lengths. Correc-

tions were introduced into the formulae for calculation the

individual half-cell frequencies. LabVIEW and MATLAB

software was written for a semi-automatic measurements

with a network analyzer, load cell, and RF dumbbell fix-

ture. Our system helped to control individual cell frequen-

cies to within narrow limits: the first completed Cornell

ERL 7-cell cavity has a frequency deviation of 360 kHz,

and a field flatness of 88 %. This corresponds to an aver-

age deviation of less than 0.003 inches (75 μm) per cell.
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