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Abstract

An analytic formulation that uses eigenmodes of a di-
electric wave guide to describe the signal field of an FEL is
presented. This formulation can provide an efficient char-
acterization of the FEL self-similar eigenmodes and en-
ables a clear descriptive connection to free-space propaga-
tion of the input and output radiation. The entire evolution
of the radiation wave through the linear gain regime is de-
scribed with arbitrary initial conditions. By virtue of the
flexibility in the expansion basis, this technique can be used
to find the direct coupling and amplification of specific
modes of interest. A simple transformation converts the
derived coupled differential evolution equations into a set
of coupled algebraic equations and yields a matrix determi-
nant equation for the FEL eigenmodes. Laguerre-Gaussian
modes used as an expansion basis allows investigation of
coupling and amplification of optical modes that contain
orbital angular momentum, suggesting new regimes of op-
eration for future FELs.

INTRODUCTION

The electromagnetic (EM) signal field in a free-electron
laser (FEL) is optically guided within the source electron
beam (e-beam) during exponential gain(1; 2; 3). In this
regime, it can be useful to describe the FEL light as a sum
over eigenmodes of a virtual waveguide structure(4; 5; 6;
7). This permits investigation of the coupling and propaga-
tion characteristics of specific EM mode structures during
the interaction. There can also be flexibility in the form
of the expansion mode basis such that a specific basis set
can be chosen to optimally suit a given FEL geometry. The
eigenmodes of a quadratic index fiber as presented here,
for example, are particularly useful because they are com-
posed of composite gaussian functions (typically Hermite-
Gaussian or Laguerre Gaussian functions) that also arise
in the solutions to the paraxial wave equation for free-
space propagation(8; 9). This correspondence establishes a
useful connection between free-space modes and the opti-
cally guided modes of the FEL, providing a model that not
only can describe optical mode propagation from startup
through high-gain, but also both the input (seeding) and
output radiation characteristics.
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This framework is motivated in particular by the de-
sire to explore the coupling and propagation characteris-
tics of well-known Laguerre-Gaussian (LG) modes. These
modes are of interest since, for the higher-order azimuthal
modes, they are known to possess a well-defined value l�
of orbital angular momentum (OAM) as a result of a az-
imuthal component of the linear momentum(10). Light that
carries OAM is a subject of intense research for current
and potential applications in microscopy(11), information
encoding(12), quantum entanglement schemes(13), Bose-
Einstein condensates(14), and molecular transitions(15).
Coherent OAM modes allow the possibility of light-driven
micro-mechanical devices or the use of torque from pho-
tons as a exploratory tool(16). Modes of this type may
be particularly relevant for study with modern optical and
next-generation x-ray FELs with the ability to probe the
structure of matter down to Å length and attosecond time
scales. For future FEL light sources with, for example,
flexibility in the field polarization (which varies the spin
angular momentum of the emitted photons), the ability to
directly generate intense higher-order LG modes in situ
would further extend the experimental and operational ca-
pabilities.

MODE DESCRIPTION

The radiation fields in the FEL can be expanded in terms
of transverse radiation modes of a guiding structure, with
slowly-growing amplitudes that vary only as a function of
the axis and e-beam propagation coordinate, z. The electric
field is assumed to be dominantly transverse and is given by
the modal expansion

E⊥(r, t) = Re
[ ∑

q

Cq(z)Ẽ⊥q(r⊥)ei[kzq(ω)z−ωt]
]

(1)

where Ẽ⊥q = Ẽ⊥qê⊥ is an eigenfunction of an infinite,
ideal wave guide (or optical fiber), Cq(z) is the mode am-
plitude, ê⊥ is the field polarization vector and kzq(ω) is the
axial wavenumber of the mode q at the frequency ω. The
modes are orthogonal and normalized, with mode power:

Pqδq,q′ = (kzq(ω)/2μ0ω)Re
[ ∫∫

Ẽ⊥qẼ∗⊥q′d2r⊥
]
. The to-

tal power in the input field is then PT =
∑

q |Cq(0)|2 Pq.
One significant advantage of the orthogonal mode ex-

pansion approach is the ability to simplify the 3D excita-
tion equations by writing the field evolution in terms of 1D
mode amplitudes, and by integrating over the transverse di-
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mensions to quantify the effective coupling at each position
along the interaction. This can be done irrespective of the
analytic formalism used to describe the e-beam evolution
(ie, Vlasov approach, plasma fluid, etc).
In this paper, we focus on an expansion where Ẽ⊥q is an

eigenmode of a dielectric waveguide with refractive index
n(r⊥). Assuming small transverse variation, ∇n(r⊥)2 �
k the dielectric eigenmode equation that defines the expan-
sion basis is

∇2
⊥Ẽ⊥q(r⊥) + [n(r⊥)2k2 − k2

zq]Ẽ⊥q(r⊥) = 0, (2)

where k = ω/c. With the expansion fields from Eq. (1) and
the dielectric eigenmode equation in Eq. (2), the paraxial
wave equation in the presence of a local source current is
written in terms of the evolution the mode amplitudeCq(z)
via,

d

dz
Cq(z) = − 1

4Pq
e−ikzqz

∫∫
J̃⊥(r) · Ẽ∗

⊥q′(r⊥)d2r⊥ (3)

−i
∑

q′

κd
q,q′Cq′(z)e−i(kzq−kzq′ )z

where

κd
q,q′ =

ωε0
4Pq

∫∫
[n(r⊥)2 − 1]Ẽ⊥q′(r⊥) · Ẽ∗

⊥q(r⊥)d2r⊥.

(4)
This term characterizes the mode overlap in the dielectric,
and physically represents the virtual polarization currents
that are necessarily subtracted when using eigenmodes of a
virtual dielectric waveguide. In the absence of the current
term, Eq. (4) describes the propagation of paraxial waves
in terms of waveguide eigenmodes.
Guided Laguerre-Gaussian eigenfunctions of an optical

fiber are obtained with the refractive index:

n(r⊥)2 = 1−
( r

zR

)2

, (5)

where zR = kw2
0/2 is the Rayleigh length and w0 is the

characteristic waist size of a transversely gaussian mode
profile. By inserting Eq. (5) into Eq. (2) we obtain(17; 18),

Ẽ⊥;p,l(r, φ) = Ãp,l

√
2

πw2
0

p!
(p + |l|)! (−1)peilφ (6)

e
− r2

w2
0

(r
√

2
w0

)|l|
L|l|

p

(2r2

w2
0

)

where Ll
p(x) =

∑p
j=0(p + l)!(−x)j/j!(p − j)!(l + j)!

is an associated Laguerre polynomial and Ãp,l is a nor-
malization constant such that the mode power is Pp,l =
(kz;p,l(ω)/2μ0ω)|Ãp,l|2. The mode index is double-
valued: q = (p, l), with p corresponding to the radial
modes and l to the azimuthal modes. (The different in-
dices are used interchangeably throughout.) The eigen-
modes in Eq (7) are identical in the transverse dependence

to free-space LG fields that satisfy the paraxial wave equa-
tion when the free-space modes are evaluated at the opti-
cal beam waist. The explicit dependence on the Rayleigh
length zR in Eq. (5) defines a specific form for the di-
electric profile in which a free-space Laguerre-Gaussian
mode with waist size w0 at frequency ω will propagate
as a guided eigenmode of the virtual dielectric. The axial
wavenumbers determined by Eq. (2) are,

k2
z;p,l = k2 − 4

w2
0

(2p + |l|+ 1). (7)

With Eq. (7) the dielectric mode overlap parameter κd
q,q′

can be solved analytically(6).

E-BEAM EVOLUTION

The e-beam evolution is solved in a linear cold plasma
fluid model with the density given by

n(r, t) = n0f(r⊥) + Re
[
ñ1(r)eiω(z/v0−t)

]
(8)

where n0 is the electron density, f(r⊥) is the transverse
density profile of the e-beam, ñ1(r) is the spatial density
perturbation and v0 is the axial velocity. The transverse
divergence of the current density modulation is assumed to
be small compared with the longitudinal variation such that
the continuity equation is ∂J̃z/∂z = −iωeñ1(r). With the
longitudinal Lorentz force equation in the presence of both
the magnetostatic undulator field and the electromagnetic
input fields, the density evolution equation is written as(5)

[ d2

dz2
+ θ2

pf(r⊥)
]
ñ1(r) = −g⊥k2

pf(r⊥)
ε0cK

2γeω

∑

q′

Cq′(z)

×[kzq′ + kw]2 ˜E⊥q′(r⊥)e−iθq′z, (9)

where θp =
√

e2n0/γγ2
z ε0mev2

0 is the longitudinal plasma
wave number, θq′ = ω/v0 − (kzq′(ω) + kw) is the de-
tuning of the input mode relative to the e-beam energy,
γ2

z = (1−β2
z )−1, γ2 = γ2

z (1+K2),K = e|B̃w|/meckw is
the undulator parameter, |B̃w| is the field amplitude of the
undulator and λw = 2π/kw is the undulator wavelength.
The undulator field is Bw =Re{|B̃w|êwe−ikwz} with po-
larization vector êw. The transverse velocity due to the
magnetic undulator field is ṽ⊥w = (−icK/γ)êz× êw. Po-
larization alignment between input field and the electron
motion in the undulator is given by g⊥ = ê⊥ · (êz × ê∗w).
The transverse component of the current density that ex-
cites the signal wave is written in terms of the density mod-
ulation as

J̃⊥(r) = −1
2
eñ1(r)ṽ⊥we−ikwz. (10)

Equation (9) describes the evolution of the density mod-
ulation in the presence of longitudinal space charge effects
(second term, left hand side) and the ponderomotive fields
(right hand side). In the mode expansion approach, it is
convenient to express the density perturbation ñ1(r) as a
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sum over the expansion eigenmodes such that the orthogo-
nality of the basis can be used to compactly write the den-
sity evolution equation (9) in terms of spatial modulation
amplitudes. We write,

ñ1(r) =
kε0
e

∑

q

aq(z)Ẽ⊥q(r⊥). (11)

Plugging this expansion into Eq. (9), both sides are then
multiplied by Ẽ∗⊥q and integrated over the transverse co-
ordinate. With Eq. (10) and Eq. (4), the coupled FEL
excitation equations are

d

dz
Cq(z) = −iξqg

∗
⊥aq(z)eiθqz

−i
∑

q′

κd
q,q′Cq′(z)ei(θq′−θq)z,

d2

dz2
aq(z) + θ2

p

∑

j

Fq,jaj(z) =

− 1
ξq

∑

q′

Qq,q′Cq′(z)e−iθq′z, (12)

where ξq = Kk2/4γkzq. The coupling between the e-
beam and the signal field is given by the mode coupling
coefficient:

Qq,q′ = g⊥ θ2
p

(kzq′ + kw)2

8kzq

(K

γ

)2

Fq,q′ . (13)

where Fq,q′ is the beam profile overlap coefficient and
quantifies the spatial overlap of the e-beam profile with the
expansion modes:

Fq,q′ =

∫∫
f(r⊥)Ẽ⊥q′(r⊥)Ẽ∗⊥q(r⊥)d2r⊥∫∫

|Ẽ⊥q(r⊥)|2d2r⊥
. (14)

The coupling to any arbitrary transverse e-ebam profile can
be computed using Eq. (14), with analytic solutions avail-
able in the LG basis for several analytic forms including
flat (“beer-can”), parabolic and gaussian distributions(6).
Equation (12) fully describes the field evolution and den-
sity bunching evolution of the e-beam with arbitrary ini-
tial conditions on the bunching aq(0), velocity modulation
daq(0)/dz and input field amplitudes Cq′(0). Note that
with the coupling turned off (Qq,q′ = 0), Eq. (12) de-
scribes the evolution due only to longitudinal space-charge
oscillations, with the density mode amplitudes coupled to
each other through Fq,q′ . This contribution is valid when
the characteristic e-beam radius satisfies r0 � λγz , and
is useful for calculation of the overall density and velocity
bunching amplitudes of the e-beam over a drift. Longitudi-
nal space-charge can also have a significant contribution to
the e-beam dynamics during the FEL interaction.

SUPERMODES

During exponential gain, the eigensolutions to Eqs. (12)
are the combinations of the expansion mode profiles that

propagate self-similarly, i.e., with constant amplitude co-
efficients and with distinct complex wavenumbers(19). In
the presence of gain, each supermode wavenumber will be
different from the wavenumber of free-space and can be
written with a complex valued perturbation δ̃k that is due
to the FEL interaction kSM = k+ δ̃k, where Re{δ̃k} antic-
ipates an effective modified refractive index to that of free-
space (guiding), and Im{δ̃k} is related to the exponential
gain. Since the supermodes evolve after the initial startup
period and have fixed transverse profiles along z, one can
substitute Cq(z) = bqe

i(kSM−kzq)z for the mode amplitude
coefficients Eq. (1). Inserting this transformation into Eq.
(12) converts the coupled second-order differential equa-
tions into a set of coupled algebraic equations written in
matrix form,
[[

I(δ̃k−θ)2−θ2
p M

][
Iδ̃k+κd−Δk

]
+Q

]
b = 0. (15)

The matrix elements of M are given by Mq,q′ =
(kzq′/kzq)Fq,q′ , and similarly for κd = {κd

q,q′}, Q =
{Qq,q′}, and Δk = {Δkqδq,q′}. The matrix I is the iden-
tity. The supermode coefficients bq, which are elements
of the column vector b are given by solutions to Eq. (15).
The dominant, or highest gain supermode coefficients cor-
respond to the solution that yields the most negative value
of Im{δ̃k}, defined to be δ̃ki. The full complex valued
solution δ̃k = δ̃kr + iδ̃ki, with the corresponding set of
eigenvalue coefficients bq define the dominant supermode
field of the FEL. The 3D power gain length, or e-folding
length is given by LG = 1/|2δ̃ki| Solutions to Eq. (15)
have been shown to be equivalent(7) to solutions in the
cold beam limit given by an alternate formulation which
describes the interaction through the coupled Maxwell-
Vlasov equations(19).
In the 1D limit the matrix elements are degenerate: F →

I and κd,Δk → 0, and Eq. (15) effectively reduces to
the familiar FEL cubic equation with gain parameter Q →
IQ = I(θpθs)2k/4 = I(2kwρ)3 where ρ is the well-known
Pierce parameter often used in FEL theory(20).

SINGLE GAUSSIAN MODE

During high-gain, the proper balance between the natu-
ral diffraction of the coherent radiation and the guided fo-
cusing of the radiation due to the e-beam determines the
eventual spot size wSM of the EM supermode field. This
can be obtained with the dielectric expansion formulation
in a natural way, through the solutions to the excitation
equations, or can be estimated by assuming that a sin-
gle gaussian mode (SGM) structure closely approximates
the supermode profile. An analytic form for the approxi-
mate SGM size wg has been derived for a gaussian e-beam
f(r⊥) =exp(−r2/r2

0) in Ref. (5):

(1 +
w2

g

2r2
0

)
[
1− 1

kw2
gkwρ

]3

= 1 (16)
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Figure 1: Intensity and phase along the undulator for an l = 2 optical seed on a cold Gaussian e-beam, helically pre-
bunched for superradiant emission of an l = 1 OAM mode. The l = 1 mode has larger gain, and is the dominant mode at
the end of the undulator.

and also provides a useful starting value for the expansion
basis spot sizew0 which can be used to streamline the com-
putation of the full solutions.

OAM COUPLING AND DISPERSION

It is interesting to note the form of the coupling in the
case of an axisymmetric e-beam f(r⊥) = f(r). With the
simple azimuthal dependence of the LG basis in Eq. (7),
the overlap integral in Eq. (14) is trivial and clearly demon-
strates that the different azimuthal modes do not couple to
each other:

F(p,l),(p′,l′) ∝ 2πδl,l′ . (17)

The excitations equations can therefore be solved for each
azimuthal mode independently, allowing one to find the
amplification and propagation of modes that contain OAM

directly.

The presence of multiple azimuthal modes in the e-beam
can reveal detailed information on the gain, guiding and
microbunching characteristics that would otherwise be ob-
scured with purely radial modes. Since each OAM mode
couples to the electron bunch differently, they each have
different gain curve and therefore different effective opti-
cal guiding. This leads to longitudinal mode dispersion
where each OAM mode propagates at its own phase ve-
locity, resulting in observable variation in the transverse
intensity profile along the interaction length(7). Figure 1
shows the evolution of two simultaneous OAM modes –
one excited by optical seeding, the other by superradient
emission. The on-axis topological singularity at the undu-
lator entrance characteristic of the l = 2 input optical mode
is deformed and eventually replaced by a singularity with
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topological charge 1, characteristic of the dominant l = 1
mode. During the evolution, spiral intensity structures are
observed in the intensity while isolated paired singularities
are shown to appear (at z = 1.575 and z = 3.9375) and
disappear in the transverse phase. Such structures demon-
strate a complex interaction dynamic as the optical beam
that carries 2� units of OAM per photon at the entrance is
amplified and evolves into a dominate mode with � units
of OAM per photon. Future investigations could shed light
on this issue in detail, showing exactly how much of the
total orbital angular momentum may be transferred to, or
extracted from the e-beam in this process, and how much
may become coupled to the spin off-axis.
We note also that excitation of an l = l0 optical OAM

mode at the fundamental frequency necessarily excites the
same azimuthal mode structure in the e-beam [Eq. (11)].
Amplification of the pure OAM mode tends to bunch the
e-beam into a continuous helix (or multiply twisted helices
for |l| > 1) longitudinally. The fundamental mode, which
also may be present in the beam from shot noise, also tends
to bunch the beam during gain, but into longitudinally sep-
arated microbunches. If two different azimuthal modes are
present then both bunching processes will compete, the one
corresponding to the larger coupling eventually dominat-
ing. During the mode competition, a portion of the e-beam
along the transverse profile may therefore be resonant with
both modes and amplify, while another portion may be out
of phase with one mode and be suppressed. The peak inten-
sity will therefore grow off-axis (Figure 1 at z = 1.575) un-
til the modal dispersion and asymmetric gain between the
modes eventually leads to a dominant, single supermode
(z = 5.5125). Numerical simulations using GENESIS(21)
with a cold-beam have confirmed this scenario, but more
work remains to determine the full effects of emittance and
betatron motion on the correlated bunching processes de-
scribed here.
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