
THREE-DIMENTIONAL THEORY FOR A SMITH-PURCELL
FREE-ELECTRON LASER WITH GRATING SIDEWALLS

H. L. Andrews∗, C. A. Brau, J. D. Jarvis
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, 37235, USA

Abstract

We present an analytic theory for the operation of a
Smith-Purcell free-electron laser with side walls that in-
cludes the effects of transverse diffraction in the optical
beam. We allow the width of the electron beam and the
width of the grating to vary independently, and require the
walls be high compared with the wavelength of the evanes-
cent wave. The results show that the side walls change the
empty-grating dispersion relation in important ways. When
the separation of the walls is not too large, it is sufficient
to consider only the lowest-order transverse mode of the
grating. For this case we obtain excellent agreement with
numerical simulations and experimental data.

INTRODUCTION

The wide range of potential applications for terahertz
(THz) radiation in fields such as biology, chemistry and
materials science is currently driving interest in the de-
velopment of intense, compact, tunable THz sources [1,
2]. Electron-beam-based slow wave structures are very
promising sources of THz radiation. Slow-wave struc-
tures support subluminal electromagnetic modes, which
may interact resonantly with an electron beam passing in
close proximity. This resonant interaction causes bunch-
ing in the electron beam and amplitude growth of the opti-
cal field. Superradiant Smith-Purcell radiation may be ex-
tracted from an open grating structure[3], a configuration
known as a Smith-Purcell free-electron laser (SPFEL). The
SPFEL may be operated as an amplifier (convective insta-
bility), or as an oscillator (absolute instability), depending
on the sign of the laser waves group velocity. The 2-D the-
ory of such a device has been examined in detail for the
exponential gain/growth regime [4, 5, 6, 9] and is closely
supported by particle-in cell (PIC) numerical simulations
[6, 7, 8]. In addition, we have considered analytically the
effects of transverse diffraction in a 3-D theory without side
walls [10].

In this work, we include the effects of transverse diffrac-
tion in the optical beam of an SPFEL including confine-
ment of the beam by side walls. The results show that the
presence of side walls changes in the dispersion relation
significantly. Excellent agreement is obtained when the re-
sults are compared to numerical simulations using a PIC
code [11] and experimental data [13].
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DISPERSION

In a SPFEL, resonant energy exchange between the elec-
tron beam and bound surface modes gives rise to spatial
modulations in the beam density. These density modula-
tions lead to superradiant enhancement of the emitted SP-
radiation, and subsequent modification of its angular dis-
tribution [3]. The intensity scale height of the evanescent
wave is Δx = βγλ/4π ≈ 40 μm for the parameters of
Table 1, where β = 0.34 is the normalized electron veloc-
ity, γ = 1/

√
1− β2, and λ ≈ 10−3 m is the free-space

wavelength.

Table 1: Grating and beam parameters used in calculations.

Grating period 157 μm
Grating width 610 μm
Slot depth 226 μm
Slot width 61 μm
Grating length 7.85 mm
Beam energy 30 keV
Beam width/height 44 μm
Beam current 10 mA
Height of beam centroid 35 μm

A schematic of the device geometry with all pertinent
dimensions is given in Figures 1 and 2. Because the fields
vanish exponentially above the scale height, we allow the
electron beam to extend to infinity in x.

Figure 1: View looking down the grating in the three-
dimensional model. The electron beam has a width W and
is allowed to extend to infinity in x. The side wall spacing,
or grating width, is G and the walls expend to infinity in x.

In the following analysis we calculate the fields sub-
ject to the Maxwell equations and boundary conditions
and solve for the dispersion relation. We then intro-
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Figure 2: View of the grating from the side (walls omitted).
The grating period is L, slot depth H and slot width A. The
electron beam travels in the +z direction.

duce the electron beam as a perturbation and calculate
the resulting wavenumber and frequency shifts for solu-
tions to the dispersion relation. To first order, the electron
beam will only couple with transverse-magnetic modes, so
transverse-electric modes are not considered.

Experience has shown [6] that the fields in the grooves
are nearly uniform in the z direction, so we express the
fields inside the grooves as Fourier series of the form

E(g)
z =

∞∑

r=0

E(g)
r sin [κr(x+H)] cos

[
(2r+1)

πy

G

]
e−iωt

H(g)
y =

∞∑

r=0

H(g)
r cos [κr(x+H)] cos

[
(2r+1)

πy

G

]
e−iωt

where ω is the frequency. Each term in the fields must sat-
isfy the wave equation, which is given in the grooves by

κ2
r + (2r + 1)2

π2

G2
− ω2

c2
= 0

Above the grating we expand the fields in Floquet series of
the form

E(e)
z =

∞∑

r=0

∞∑

p=−∞
E(e)

p e−αrpxcos
[
(2r+1)

πy

G

]
eipKzei(kz−ωt)

H(e)
y =

∞∑

r=0

∞∑

p=−∞
H(e)

p e−αrpxcos
[
(2r+1)

πy

G

]
eipKzei(kz−ωt)

where k is the longitudinal wavenumber, and K = 2π/L is
the grating wave number. The electron beam is treated as
an isotropic plasma dielectric in its rest frame, the primed
coordinates, having an index of refraction given by [12]

n′ (ω′) = 1 + χ′e (ω′) = 1− ω′2e
ω′2

where χ′e = −ω′2
e

ω′2 is the frequency-dependent susceptibil-

ity and ω′e is the plasma frequency. Since (k + pK)− ω2
p

c2 ,

E
(e)
p and the transverse dimensions, x and y, are Lorentz

invariant, the wave equation above the grating becomes

α2
rp− (2r + 1)2

π2

G2
− (k + pK)2 +

ω2

c2
− ω′e2

c2
= 0. (1)

Using the parameters in Table 1, we find the plasma fre-
quency to be ≈ 1010 Hz, and the operating frequency

≈ 1012 Hz, allowing us to ignore the last term in equa-
tion (1) and find that αrp is constant across the width of the
grating.

When we use the Maxwell-Ampere law and Gausss law
to relate the electric and magnetic field components and
require that the tangential electric and magnetic fields be
continuous at the surface of the grating, we arrive at the
dispersion relation

DsE
(g)
s =

∞∑

r=0

RsrE
(g)
r (2)

where

Ds = 1 +
L

A

sin (κsH)
cos (κsH)

∞∑

p=−∞

ω2K∗
pKp

ω2 − (k + pK)2 c2

αsp

κs

Rsr =
L

A

ω2K∗
0K0

ω2 − k2c2

ω2
e

γ3 (ω − βck)2
αr0

κs
Jrs

sin (κrH)
cos (κrH)

are the disperion function for the rth transverse component
and the coupling matrix respectively.

In the absence of the electron beam, the dispersion rela-
tion ωr (k) for mode r is found from Dr (ω, k) = 0. This
is shown in Figure 3 for parameters of Table 1. Also shown
is the beam line ω = βck . The synchronous points shown
there are the points where the modes have a phase veloc-
ity equal to the velocity of the electrons in the beam. The
group velocity for each mode is the slope of the dispersion
curve, βrc = dωr/dk . We note that for the parameters
in Table 1, the group velocity is negative for all r . Also
shown in Figure 3 is the dispersion curve predicted by the
2-D theory [6]. The group velocity in this theory is posi-
tive.
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Figure 3: The dispersion relations for the 2D theory [6]
and 3D theory with walls for the first 4 transverse modes,
plotted with the beam line for 30 kV and light lines. The
2D theory predicts a∼900 μm forward wave, while the 3D
theory predicts a ∼ 790 μm backward wave. The higher
transverse modes are well separated from the r = 0 mode.

When the electron beam is present we define εr =
DrE

(g)
r and Tsr = Rsr/Dr so that the disperion relation
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becomes an eigenvalue equation

εs =
∞∑

r=0

Tsrεr = λεs. (3)

where λ = 1.
This equation must be solved numerically. To provide

a starting value for the solution algorithm, we need an ap-
proximate solution of (3), or equivalently (2). We begin
by observing that when gain is maximized, the walls of
the grating are as narrow as possible. When the grating is
narrow, the modes are widely spaced, as shown in Figure
3 and the solution is dominated by the lowest transverse
mode r = 0. Also when the electron beam fills most of the
grating, the overlap integrals Jrs are small for r �= s , so
the coupling matrix Rsr is nearly diagonal. Therefore, on
the right-hand side of (3) we ignore all modes except r = s.
For the lowest-order mode we find D0 (ω, k) = R00 (ω, k).

We expect that the gain will be maximal near the syn-
chronous point (ω0, k0) where D0 (ω0, k0) = 0 and ω0 =
βck0. Near this point we expand

D0 (ω, k) ≈ Dωδω + Dkδk (4)

where δω = ω − ω0, δk = k − k0, Dω (ω0, k0) =
∂D0
∂ω (ω0, k0) and Dk (ω0, k0) = ∂D0

∂k (ω0, k0). But along
the dispersion curve, Dω and Dk are related by

dD0

dk
= 0 =

∂D0

∂k
+

∂D0

∂ω

∂ω

∂k
= Dk + β0cDω

This allows us to rewrite the dispersion function as
D0 (ω, k) ∼= Dω (δω − β0cδk). Including these approxi-
mations, the dispersion relation becomes

(δω − βcδk)2 (δω − β0cδk) =
ω2

e

γ3

Q00 (ω0, k0)
Dω (ω0, k0)

where Qsr (ω, k) = Rsr (ω − βck). This has the same
form as the 2-D theory, so we can take advantage of the
analysis used for that case [6].

AMPLIFIER

When the device operates as a steady-state amplifier,
δω = 0 and β0 is positive. The dispersion relation becomes

δk3 = − ω2
e

β2β0γ3c3

Q00 (ω0, k0)
Dω (ω0, k0)

This has three roots. Calculations show that Dω and Q00

are both negative, irrespective of the operating voltage, so
the roots are

δkn =
∣∣∣∣

ω2
e

β2β0γ3c3

Q00 (ω0, k0)
Dω (ω0, k0)

∣∣∣∣
1
3

ei 2π
3 n (5)

for n = 0, 1, 2. The gain is the imaginary part of the root
with the most negative imaginary part, so we see that the
gain is

μ =
√

3
2

∣∣∣∣
ω2

e

β2β0γ3c3

Q00 (ω0, k0)
Dω (ω0, k0)

∣∣∣∣
1
3

Starting with the three approximate roots given by (5),
we can solve the exact dispersion relation (3) to find the
gain. The results are shown in Figure 4, where we see that
for the parameters in Table 1 the approximate calculation
of the gain is quite close to the exact solution. The mode is
dominated by the lowest-order component, r = 0, and the
Taylor expansion (5) is justified.
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Figure 4: Gain as a function of electron beam energy for
the lowest mode and the exact solution considering mode
mixing. Gain is dominated by the contribution from the
lowest mode.

OSCILLATOR

When the synchronous point lies to the right of the Bragg
point, the group velocity is negative and the device oper-
ates on an absolute instability [5]. Above a certain current,
called the start current, the device oscillates spontaneously.
In this case, both the frequency shift and the wave number
shift are nonvanishing. For a solution to exist three bound-
ary conditions must be satisfied in conjunction with the dis-
persion relation. The electron beam must be free of density
and velocity modulations at the upstream end of the grat-
ing, and the input optical field at the downstream end must
vanish [6]. In general, the fields corresponding to the three
roots of the homogeneous dispersion relation have differ-
ent transverse profiles, and the boundary conditions cannot
be satisfied for all y. In cases of practical interest, the so-
lution is dominated by the lowest-order component r = 0
, as discussed above. The three roots have the same profile
and can interfere to satisfy the boundary conditions for all
y. We further assume that the Taylor-series expansion used
above to compute the approximate solution of the disper-
sion relation remains valid. The analysis is then the same
as that used previously for the 2-D theory [6]. The three
waves corresponding to the three roots of the dispersion
relation become locked together to form the mode of the
oscillator. All the waves have the same complex frequency
shift δω, but different wave number shifts, so they inter-
fere constructively and destructively to satisfy the bound-
ary conditions.

As a test of these predictions, we can compare our re-
sults to the simulations by Dazhi Li [11]. The parameters
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are summarized in Table 1. In the simulations the elec-
tron beam fills only the region between hb = 13 μm and
ht = 57 μm, whereas in the theory the beam extends to in-
finity. To correct for this we reduce the current density by
the filling factor F = exp (−hbα0,−1) − exp (−htα0,−1)
where 1/α0,−1 is the scale height of the evanescent wave
[6]. As shown in Figure 5, the agreement with simulations
is remarkably good.
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Figure 5: Growth rate as a function of electron beam cur-
rent compared with PIC code simulations [11]. The results
show remarkable agreement.

In Figure 6 we compare the operating wavelength pre-
dicted by this theory with that observed in recent experi-
ments [13]. The agreement is quite good.
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Figure 6: Spectrum from recent experiments at Vermont
Photonics [13] compared with predicted operating wave-
length. The agreement is very good.

CONCLUSIONS

We present a theory of operation for an SPFEL with grat-
ing side walls. We find that gain and growth rate are in-
creased over the 2-D and 3-D theory without walls. We also
find remarkable agreement when comparing the predicted
growth rate with PIC code simulations, and the predicted
wavelengths with experimental observations.
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