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Abstract 

The mode quality of free-electron lasers (FELs) is near 
the diffraction limit. Here, we analyze the optical mode 
quality in FELs using the M2 parameter, which is a meas-
ure of the size and divergence of the optical beam. We 
calculate M2 in two ways: (1) by a direct integration over 
the transverse mode structure, and (2) by allowing the 
mode to expand beyond the wiggler and analyzing the 
divergence. A numerical analysis is conducted using the 
MEDUSA simulation code that shows that M2, as ex-
pected, is near unity at saturation. 

INTRODUCTION 
It is widely known that the mode quality of the output 

of free-electron lasers (FEL) is near the diffraction limit 
[1-3]. Good optical beam quality is important in many 
FEL applications. In particular, it is relevant to atmos-
pheric propagation of high power FELs [4,5] as well as to 
the application of FELs in research environments at ultra-
violet and x-ray wavelengths [6-9]. Numerical analysis 
has shown that the mode content in an FEL oscillator is 
predominantly in the TEM00 mode for oscillators that use 
transmissive outcoupling [1]. The optical mode quality 
was observed in the Los Alamos FEL oscillator [2,3] 
where the mode was shown to be near the diffraction 
limit. The mode quality in this experiment was character-
ized by a measurement of the Strehl ratio [10], which is 
defined in the far field as the ratio of the on-axis intensity 
to the intensity of a pure Gaussian mode (TEM00) with the 
same spot size. As such, the Strehl ratio has a maximum 
value of unity for an ideal, pure Gaussian beam and de-
creases as the higher order mode content increases. The 
Strehl ratio was found to be approximately 0.9 in the Los 
Alamos oscillator indicating an output mode close to a 
pure Gaussian.   However, the Strehl ratio is difficult to 
determine for optical modes that differ appreciably from 
that of a Gaussian. Higher order mode content is likely to 
be more important in single-pass FELs, such as Master 
Oscillator Power Amplifiers (MOPA) or Self-Amplified 
Spontaneous Emission (SASE) configurations that are 
operated past saturation. 

The beam quality in FELs can be quantified by 
means of the M2 parameter [11-13], which is a measure of 
the higher order mode content in the optical beam. It is 
equal to unity for a perfect Gaussian beam (pure TEM00) 

and increases as the mode quality deteriorates, i.e., the 
divergence angle of the beam increases as the higher or-
der mode content increases. Thus, the divergence angle of 
an optical beam is often described as  “times diffraction 
limited” in the far field, where the term “times diffraction 
limited” is relative to the spreading angle of a fundamen-
tal Gaussian mode with an equivalent spot size. The M2 
parameter is analogous to emittance, which is a measure 
of beam quality in particle beams. M2 was measured in 
the FEL oscillator experiment at Thomas Jefferson Na-
tional Accelerator Facility [14]. This experiment pro-
duced average powers in excess of 2 kW at a wavelength 
of 3.1 microns. Measurements indicated a nearly pure 
fundamental Gaussian mode with M2 = 1.1 at the output 
mirror for powers up to about 350 W. As the power in-
creased beyond 350 W, M2 increased and reached values 
of ~ 2 for powers of 500 W. However, much of the in-
crease in M2 that occurred at higher power levels was 
attributed to mirror distortions and not the wave-particle 
interaction in the FEL. As a result, the mode quality may 
be improved in high-power oscillators using mirrors that 
compensate for distortions. It should also be remarked 
that the mode quality in high-power amplifiers is gov-
erned solely by the FEL interaction. 

In this paper we examine the mode quality in FEL 
amplifiers and determine M2 in two ways: (1) by a direct 
integration over the transverse mode structure, and (2) by 
allowing the mode to expand beyond the wiggler and ana-
lyzing the mode divergence as discussed in Sec. II. In 
Sec. III we study M2 in FEL amplifiers using the 
MEDUSA simulation code [15,16]. 

THE M2 PARAMETER 
The spot size of an axially symmetric laser beam is de-

fined to be 

              

W2 z = 2
dxdyr2I x,y,z

dxdyI x,y,z
 .                       (1) 

 
where I(x,y,z) is the time-averaged intensity, which can 
contain higher order modes. In the paraxial approxima-
tion, it can be shown that in a linear, homogeneous me-
dium, the spot size evolves according to the parabolic 
propagation rule [10-13] 

               
W2 z = W0

2 + M 4 λ2

π2W0
2

z − z0
2                 (2)

 

where λ  is the laser wavelength and z0 is the location of 
the waist, and W0 is the spot size at the waist. From Eq. 
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(2), the asymptotic divergence angle is given by θD = 
M2λ /(π W0), as shown schematically in Fig. 1. 

Figure 1: Schematic illustration of parabolic mode ex-
pansion. 

In deriving an expression for 2M , we represent the op-
tical mode in the form, E(x,t) = (1/2)A(x) ê⊥ exp(ikz – iωt) 
+ c.c., where A(x) is the complex field amplitude, k = ω/c, 
ω is the angular frequency, ê⊥ is a unit vector in the trans-
verse direction that defines the polarization of the field, 
and c.c. denotes the complex conjugate. The complex 
field amplitude can be written as a superposition of 
Gauss-Hermite modes 

        

       
A x = Am,nw 0 Um x,z Un y,zΣ

m,n = 0

∞

 
 

                  × exp iθm,n z exp − iα z r2/w2 z ,        (3) 
 
where Am,n are constants, 
                      

     

Um x,z = 2
π

1/4 1
2mm!w z  

 

                                × Hm
2 x

w z exp − x2/w2 z  ,     (4) 

 
and Hm denotes the Hermite polynomial of order m 

[17].  The complex field amplitude must satisfy the free 
space paraxial wave equation, 0)]/(2[ 2 =∂∂+∇⊥ Azik , so 
that 

                 α z = α 0 − 1 + α2 0 z
zR ,                        (5a) 

       w2 z = w2 0 1 + 1 + α2 0 z2

zR
2 − 2α 0 z

zR
,   (5b) 

and 
            θm,n = (m + n + 1)[tan−1α(z) – tan−1α(0)] ,     (5c) 
 

where α denotes the radius of curvature, and θm,n is the 
generalized Guoy phase. The initial values of α and w are, 
in general, arbitrary but should be chosen judiciously in 
order to minimize the number of modes necessary to 
characterize the field. The quantity w(z) denotes the spot 
size of the fundamental (TEM00) Gaussian mode, zR = 
πw2(0)/λ is the Rayleigh range with respect to the Gaus-
sian spot size at  z = 0.  

Free space propagation is assumed in this field repre-
sentation. As such, it does not represent the evolution of 

the field within the wiggler in an FEL. Rather, the z = 0 
position denotes the field at the exit of the wiggler, at 
which point the complex field amplitudes can be ex-
pressed as 

             

Α m,n = 1
w 0 dx

− ∞

∞
dy

− ∞

∞
A x,y,0 Um x,0 Un y,0

 

                                             × exp iα 0 r2/w2 0 .    (6) 
 
The field amplitudes at the wiggler exit are used to de-

termine M2. 
The optical intensity is given by 
 

    
I x,y,z = c

8π
A x,y,z A* x,y,z

 
               

                 

= c
8π

w2 0 Am,nAm',n'
* Um x,z Um' x,zΣ

m,m',n,n'  
 

                  × Un y,z Un' y,z exp iθm,n z − iθm',n' z ,  (7)   
 
and the total power is constant and given by 
 

      
P0 = dx

− ∞

∞
dy

− ∞

∞
I x,y,z = c

8π
w2 0 Am,nAm,n

*Σm,n
.  (8) 

 
The spot size for a symmetric beam follows from Eq. 

(1) and is 
    

        
W2 z = w2 z

2m + 1 Am,nAm,n
*Σm,n

Am,nAm,n
*Σm,n  

 

                    

+ 2w2 0 1 − 1 − α2 0 z2

zR
2 − 2α 0 z

zR  
 

                       
×

m + 1 m + 2 Am,nAm+2,n
*Σm,n

Am,nAm,n
*Σm,n

  ,   (9) 

 
Since the initial phases between the modes are uncorre-

lated and vary randomly in time, we can perform a time 
average of Eq. (9) so that the off-diagonal terms vanish, 
and we obtain
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The optical beam quality factor M2 can be written in 

terms of the complex mode amplitudes, Am,n. For a colli-
mated beam, α0(0) = 0, the square of the spot size in 
Eq.(10) becomes W2(z) = W2(0)(1 + z2/zR

2). Comparing 
this result with Eq. (2) for a collimated beam, we find that 
M2 = (πW2(0)/λ)/zR  = W2(0)/w2(0). Substituting this into 
Eq.(10), yields the beam quality factor in terms of the 
mode amplitudes,  

 

     M 2 = cw2 0
8πP0

2m + 1 Am,nAm,n
*Σm,n

.            (11) 

z0 + zRz0

z
1

(1 + M4)1/2

W(z)/W0

θD = M 2 λ
πW0

z0 + zRz0

z
1

(1 + M4)1/2

W(z)/W0

θD = M 2 λ
πW0
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If the modal decomposition at the exit of the wiggler in 
an FEL is known, i.e., mode amplitudes, spot size w and 
curvature α, 2M  can be calculated for the output optical 
mode using Eq. (11). However, if there is significant 
higher order mode content, then the convergence of the 
technique will depend upon an accurate determination of 
these higher order modes. Therefore, it is useful to have 
an alternate technique for obtaining 2M . One such tech-
nique, based on the parabolic propagation rule, makes use 
of the expansion of the optical mode. The spot size of the 
beam is calculated using Eq. (1) at three different axial 
positions after the wiggler exit and is used in Eq. (2) to 
obtain the three unknowns, W0, z0, and M2. 

NUMERICAL ANALYSIS 
For simulation purposes, we use the 3-D FEL simula-

tion code MEDUSA [15,16] which can model planar or 
helical wiggler geometry, treats the electromagnetic field as 
a superposition of Gaussian modes (Hermite or Laguerre). 
The code uses an adaptive eigenmode algorithm called the 
Source-Dependent Expansion [18] to self-consistently de-
scribe the guiding of the optical mode through the wiggler. 
The field equations are integrated simultaneously with the 
3-D Lorentz force equations for an ensemble of electrons. 
No wiggler-average orbit approximation is used, and 
MEDUSA can propagate the electron beam through a com-
plex wiggler/transport line including multiple wiggler sec-
tions, quadrupole and dipole corrector magnets, FODO lat-
tices, and magnetic chicanes. In addition, MEDUSA can 
propagate the field beyond the exit from the wiggler in free 
space. Both of the techniques described above to determine 
M2 can be simulated using MEDUSA, i.e., (i) obtaining the 
mode amplitudes at the end of the wiggler and performing 
the modal sum in Eq. (11) and (ii) propagating the field be-
yond the wiggler exit and determining the spot sizes at three 
different axial points which, from Eq. (2), yields M2. 
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Figure 2:  Evolution of the power, spot size and beam 
envelopes in the x- and y-directions. 

 
The example under consideration is that of a seeded 

amplifier at a wavelength of 0.8 μm that utilizes a strong-
focusing wiggler. The wiggler modeled is the VISA wiggler 
[19] in which the focusing quadrupoles are incorporated into 
the wiggler design. The electron beam has an energy of 72.5 
MeV and a peak current of 300 A. The emittance and en-
ergy spread are 2.0 mm-mrad and 0.01% respectively. The 

initial beam size in the x-and y-directions is 46 μm, and the 
Twiss-α parameter is zero. It should be remarked that no 
attempt has been made to produce an ideal match into the 
FODO lattice. The wiggler period is 1.8 cm and the maxi-
mum on-axis field strength is 7.5 kG with a field error of 
0.4% and a gap of 6.0 mm. The FODO cells have a length 
of 24.75 cm and each quadrupole has a length of 9.0 cm and 
a focusing gradient of 33.3 T/m. Hence, the separation be-
tween quadrupoles is 12.38 cm. 
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Figure 3.  Transverse mode pattern at the wiggler exit for 
a seed power of 10 kW. 
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Figure 4.  Variation in M2 versus the number of modes 
included in the simulation showing convergence after 
about 40 modes. 

 
The first case we consider makes use of 34 Gauss-

Hermite modes and assumes a seed power of 10 kW. This 
yields saturation at the end of the wiggler at a power level 
of 115 MW. The evolution of the power, overall spot size 
of the optical mode, and the beam envelopes in the x- and 
y-directions is shown in Fig. 2. Observe that the beam 
envelopes in the x- and y-directions vary as expected in 
the FODO lattice and that the overall mode spot size ex-
pands and contracts with the beam envelope showing the 
optical guiding of the radiation; however, the guiding is 
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not strong enough for the optical mode to follow all the 
variations in the beam envelope. The use of 34 modes in 
the simulation means that very high order modes are in-
cluded. Propagating this field beyond the exit of the wig-
gler, we find that M2 = 1.45, which is close to the diffrac-
tion limit as expected in FELs and corresponds to a near-
Gaussian mode pattern as shown in a normalized trans-
verse mode pattern in Fig. 3. 

An important issue in modeling the beam quality in 
FELs using the modal decomposition at the exit from the 
wiggler is the convergence of M2 with respect to the num-
ber of modes in the superposition. The number of modes 
required to obtain reasonable values for the saturated 
power is generally smaller than that required to obtain an 
accurate determination of the optical mode quality as 
measured by M2. This is because the FEL preferentially 
excites lower order Gaussian modes. However, the effect 
of the higher order modes is enhanced in the determina-
tion of 2M  as shown in Eq. (11) where the modal sum is 
weighted by the factor (2m + 1) that gives higher weights 
for the higher order modes. For example, simulation using 
6 Gauss-Hermite modes also yields a saturated power of 
115 MW which is the same power found using 34 modes, 
but M2 = 1.23. Hence, it is important to determine the 
number of modes required to reach convergence. This is 
shown in Fig. 4 for these parameters where we plot M2 
versus the number of Gauss-Hermite modes in the super-
position using both the analytic, Eq. (11), and propagation 
methods. It is clear from the figure that convergence is 
achieved using ~ 40 modes for M2 = 1.48 using the 
propagation method. The analytic method converges to a 
value of M2 = 1.57 for a discrepancy of about 5.5%. We 
attribute this discrepancy between the analytic and propa-
gation methods to the fact that the analytic method was 
derived under the assumption of axially symmetric optical 
modes, while the actual mode displays a small degree of 
asymmetry. 

SUMMARY AND DISCUSSION 
In summary, we have discussed the determination of 

optical beam quality, i.e., M2, in FELs by two methods. 
One is a direct calculation based on the mode decomposi-
tion at the end of the wiggler and the other relies on a 
three-point fit to the optical mode spot size as it propa-
gates beyond the end of the wiggler. We found that the 
simulation required a relatively large number of higher 

order modes to achieve convergence in the determination 
of M2. The results indicate that the beam quality to be 
expected is near-diffraction limited when the wiggler 
length is comparable to the saturation length. For wigglers 
longer than the saturation length, however, higher order 
mode content increases and the optical mode quality de-
creases (M2 increases). 
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