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Abstract

We describe the radiation properties of an x-ray free
electron laser oscillator, beginning with its start-up from
noise through saturation. We decompose the initially
chaotic undulator radiation into the longitudinal modes
of the resonator whose properties are largely determined
by the transverse gain profile and the bandwidth of the
Bragg mirror. Because the radiation is initially comprised
of several modes whose growth rates are comparable, we
show that only after many oscillator passes is the output
pulse dominantly characterized by the lowest-order, gaus-
sian mode. Understanding the full longitudinal structure
during the initial amplification will be critical in assessing
the tolerances on the electron beam, undulator, and optical
cavity required for robust operation.

INTRODUCTION

The basic principles of a free electron laser (FEL) os-
cillator are well-known (see, e.g., [1]), involving the suc-
cessive FEL gain of radiation confined in an optical cav-
ity. Recently, such an FEL design was proposed for x-rays
[2], in which the electron beam has a low emittance ∼ 0.1
mm ·mrad, and the resonator cavity is created using Bragg
mirrors that have high reflectivities for x-rays over very nar-
row bandwidths [3]. Typically, the per pass linear FEL gain
g ∼ 0.3, while the total power losses in an optimized cav-
ity can be as low as α ∼ 0.1 − 0.25. Such a device is pre-
dicted to provide Fourier-limited, picosecond x-ray pulses
of MW power at repetition rates∼ 1 MHz, thereby serving
as a complementary source to those based on self-amplified
spontaneous emission, such as LCLS [4].

In this paper we derive the supermode equation describ-
ing the linear growth and longitudinal profile of the radia-
tion. We then show how these modes are initially seeded
by the chaotic undulator radiation, resulting in the compe-
tition between various longitudinal modes. We conclude
with some results obtained for possible 5, 12, and 20 keV
radiation sources based on a FEL oscillator driven by a 7
GeV high-brightness electron beam.

LINEAR SUPERMODE THEORY

In this section we derive the growing modes of the x-
ray FEL oscillator, i.e., the cavity supermodes. Supermode
analysis of FELs was introduced in Ref. [5]; our work fol-
lows the simplified approach developed by Elleaume [6].
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For the case of x-rays, the coherence length σc of the undu-
lator radiation is much less than the inverse bandwidth of
the Bragg mirror (typically λ/σc ∼ 1/Nu ∼ 10−3 while
σωλ ∼ 10−5 − 10−6), so that slippage can be safely ig-
nored. The radiation evolution during any pass can then be
approximately described as a succession of FEL gain, fol-
lowed by reflection from the narrow-band Bragg mirrors,
followed by a displacement in distance from the next elec-
tron bunch. Assuming a peak linear gain of g, a gaussian
electron beam of width σe, a reflection transfer function
R(ω), and a radiation-bunch displacement of �, the radia-
tion evolution can be depicted by the following three steps:

gain : |E(τ)|2 →
[
1 + g e−τ2/2σ2

e

]
|E(τ)|2 (1)

mirror : E(τ) →
∫

dω eiωτR(ω)E(ω) (2)

displacement : E(τ) → E(τ + �), (3)

where τ ≡ z − ct is the co-moving bunch coordinate.
To simplify the problem further, we make several approx-
imations. First, we assume that the linear gain g is small
and real, and expand the beam profile about its maximum.
Next we assume that the Bragg mirror reflection function
is gaussian R(ω) ≈ (1−α/2)e−ω2/σ2

ω , with α the loss and
σω the single mirror spectral bandwidth, and furthermore
assume that in the frequency region of large reflectivity
(i.e., where lasing occurs) R(ω) can be Taylor expanded to
lowest order in ω. Finally, we assume that � is sufficiently
small to make a Taylor expansion here as well. Under these
assumptions, the relations (1)-(3) are simplified to:

gain : E(τ) →
(

1 +
g

2
− gτ2

4σ2
e

)
E(τ) (4)

mirror : E(τ) →
(

1− α

2
+

1
σ2

ω

∂2

∂τ2

)
E(τ) (5)

displacement : E(τ) →
(

1 + �
∂

∂τ

)
E(τ). (6)

We now use the simplified equations (4)-(6) to relate the
longitudinal E field starting pass number n+1 to that at the
beginning of pass n. Assuming that the per pass change is
small, so that En+1−En ≈ ∂

∂nE, we find that the evolution
is described by the following partial differential equation:

∂

∂n
E(τ, n) =

[
1
σ2

ω

∂2

∂τ2
− gτ2

4σ2
e

+
1
2
(g − α) + �

∂

∂τ

]
E(τ, n).

(7)

We note that the first line of this equation can be directly
related to the quantum mechanical simple harmonic oscil-
lator. Thus, it comes as little surprise that the solution to
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(7) is given in terms of the Gauss-Hermite functions:

Em(τ, n) = enΛme−τσ2
ω�/2

× exp
[√

gσω

2σe
τ2

]
Hm

[
g1/4

√
σω

σe
τ
]
,

(8)

where Λm ≡ 1
2 [(g − α) − σ2

ω�2/2 − √g(2m + 1)/σeσω]
is the per pass amplitude gain and Hm is the Hermite poly-
nomial of order m. From this, we deduce that in order to
avoid significant gain reduction we must first demand the
electron bunch-radiation timing errors to be much less than
the inverse crystal bandwidth, typically � � 0.2/σω. To
avoid unnecessary complications, we assume perfect tim-
ing for the remainder of the paper, so that � = 0. Addition-
ally, modes of higher order have less gain, and all modes
suffer significant gain reduction when σeσω � 1; thus, we
require the electron bunch length to be greater than the in-
verse crystal bandwidth σe � 1/σω to insure sufficient per
pass gain for lasing.

An example of supermode evolution is shown in Fig. 1,
for which the parameters correspond to 5 keV radiation
from the high-brightness, 7 GeV beam shown in Table 1.
These results were obtained using a 1-dimensional FEL
simulation code derived by integrating the transverse elec-
tron orbits over their unperturbed trajectories, and by as-
suming that the transverse radiation profile is a gaussian
mode whose Rayleigh range ZR is dictated by the cavity
geometry. This model includes the lowest-order effects of
energy spread, transverse beam emittance, and radiation
diffraction, and has demonstrated remarkable agreement
with the single slice results of both the 2-dimensional code
GINGER and the 3-dimensional code GENESIS. The elec-
tron βz-function and radiation ZR is chosen by maximizing
the FEL gain; typically βz ≈ ZR ≈ Lu/2π [7]. We de-
compose the longitudinal radiation profile into the Gauss-
Hermite mode functions in Fig. 1, in which the growth of
the three lowest order modes can be clearly seen, with a
growth rate decreasing as the mode order m increases. Ad-
ditionally, we can identify three distinct regions of mode
evolution, roughly delineated in Fig. 1 as regions (a), (b),
and (c). Region (a) is dominated by the spontaneous un-
dulator radiation that provides an initially chaotic seeding
for the various modes. After the fluctuations have grown
to a sufficient level, the exponential growth characteristic
of linear gain can be seen in region (b). During this phase
of evolution, we see that the modes each grow with their
characteristic growth rate that decreases as the mode order
number m increases. Finally, when the radiation amplitude
is sufficient to decrease the gain, we arrive at the nonlinear
saturation region (c). While the m = 0 and m = 1 mode
smoothly level, we also see additional growth of the m = 2
mode. Inspection of the longitudinal profile of the saturated
radiation indicates that this corresponds to a broadening of
the cavity pulse, as the optical pulse width becomes compa-
rable to that of the electron beam σe. In the following sec-
tions we further elaborate on the physics of the supermode
growth, from the initially chaotic seeding though satura-
tion.
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Figure 1: Example of supermode growth for the lowest
three order modes. The evolution of the modes can be
roughly divided into three regions: region (a) gives the
initial chaotic seeding from the spontaneous undulator ra-
diation; region (b) depicts the linear growth of the super-
modes, with the gaussian m = 0 mode having the largest
growth; region (c) is characterized by nonlinear saturation
of the gain, where the growth of higher order symmetric
modes (like the m = 2) reflects pulse broadening as it ap-
proaches the electron bunch length.

INITIAL SEEDING FROM NOISE

We model the chaotic spontaneous radiation as a random
collection of gaussian spikes, each of whose width is the
undulator coherence length σc ∼ Nuλ:

E(τ) =
∑

j

E0 exp
[
− (τ−τj)

2

2σ2
c

− τ2

2σ2
e

]
(9)

⇒ E(ω) ≈
∑

j

√
2πσcE0 exp

[
−σ2

c

2 ω2 − iωτj − τ2
j

2σ2
e

]

where j indexes the bunch electrons, and the radiation en-
velope is modulated by the electron bunch length σ e � σc.
The Bragg crystal effectively filters the radiation in fre-
quency space as given by (2), where we approximate R(ω)
as a lossy gaussian filter with width σω 	 1/σc and power
loss α. Thus, after reflection and filtering by the two Bragg
mirrors, the electric field can be approximately written as

E(τ) ≈
∑

j

(
1− α

2

)
σcσωE0

× exp
[
−σ2

ω(τ − τj)2 − τ2

2σ2
e

]
.

(10)

Comparing (9) and (10), we see that over after one pass the
characteristic amplitude of the spontaneous undulator radi-
ation is decreased by (1− α/2)σcσω: the finite reflectivity
of the crystal contributes the factor (1 − α/2) ∼ 1, while
the reduction by σcσω 	 1 arises because the bandpass of
the crystal is much narrower than the characteristic band-
width of the undulator radiation. Furthermore, the narrow
bandwidth of the crystal serves to stretch the spikes of the
spontaneous radiation, transforming them into random os-
cillations whose characteristic frequency ω ∼ σω.
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Figure 2: Example where the initial random seeding is largest in the m = 1 mode, using the same parameters (but
different seeding) as in Fig. 1. The first plot shows initial seeding of first order mode in region (a), after which the linear
growth phase is dominated by the m = 1 mode through region (b1). Due to its larger growth rate, the component of the
m = 0 mode eventually becomes dominant in region (b2). We show examples of the real (red solid line) and imaginary
(blue dotted line) parts of the scaled electric field after 40 passes and after 80 passes. While there is still a significant
antisymmetric part after 80 passes, it becomes a diminishing component, and at saturation the pulse is nearly gaussian.

To determine how the initially chaotic spontaneous un-
dulator radiation overlaps with the supermodes of the x-ray
FEL oscillator, we first decompose a single frequency os-
cillation into the supermode (i.e., Gauss-Hermite) basis:

E(τ) = A cos(ωτ) + B sin(ωτ)

=
∑

m

Cm
e−τ2/2w2

√
2mm!

√
π

Hm(τ/w),

where the mode coefficients are Cm and the width of the
supermode is defined via w2 =

√
g σω/σe. To determine

the overlap of the supermodes with the chaotic radiation,
we use the orthogonality of the Gauss-Hermite functions.
While the mode coefficients can be written analytically in
terms of Hermite polynomials, we will focus here on the
two lowest order modes, for which we find

C0 = A
σe

√
2
√

π√
σ2

e + w2
exp

[
− σ2

2w2

σ2
e + w2

ω2

]
(11)

C1 = B
σ3

ew
√√

π

(σ2
e + w2)3/2

ω exp
[
− σ2

2w2

σ2
e + w2

ω2

]
. (12)

Expressions (11)-(12) describe the overlap of the super-
mode with any single frequency component. Since the fil-
tered undulator radiation is comprised of a continuum of
frequencies, the relevant mode overlap is obtained by av-
eraging Cm over the spectrum distribution. We recall that
the characteristic frequency of the oscillations is σω , and
introduce the (approximate) averaging operator 〈·〉 via:

〈
X (ω)

〉
≡

√
2

πσ2
ω

∞∫

0

dω e−ω2/2σ2
ω X (ω). (13)

The general expression of the averaged mode coefficients
is rather cumbersome, involving the Gauss function. How-

ever, two important limits are easily obtained:

w2 � 1/σ2
ω :

〈
C0

〉
≈
√

πA

2B

〈
C1

〉
(14)

w2 ∼ 1/σ2
ω :

〈
C0

〉
� A

B

〈
C1

〉
(15)

The second limit implies that mode width (and, hence, σe)
is of order the inverse crystal bandwidth 1/σω, so that the
filtered spontaneous radiation only has significant overlap
with the lowest order gaussian mode. While this can pro-
vide a single, Fourier-limited longitudinal peak, as men-
tioned in the previous section the concomitant decrease in
effective mode gain can prevent effective lasing of the os-
cillator. In the first limit (14), on the other hand, the mode
width is significantly shorter than the electron beam, and
overlap of the spontaneous radiation typically has similar
components in the two lowest order modes (since A ∼ B).

We consider the limit w2 � σ2
e a bit further, since this

yields the highest gain and is often satisfied in practice (as
in Fig. 1). Furthermore, as indicated in (14), the seeding
of the two lowest order modes tends to be comparable. We
can obtain further insight by calculating the fluctuation of
the average mode,

〈
C2

0,1

〉
. Again, while the specifics are a

bit complicated, it is straightforward to show that

w2 � 1/σ2
ω :

〈
C2

0,1

〉1/2

∣∣〈C0,1

〉∣∣ ∼
(
w σω

)1/2
> 1, (16)

namely, that the mode coefficients are typified by large fluc-
tuations about their mean. This can result in significant
seeding of higher order modes in such a way that the pulse
is no longer largely Gaussian in linear gain regime [i.e.,
region (b) of Fig. 1]. We show an example of this phe-
nomenon in Fig. 2. The first graph demonstrates that the
initial fluctuating phase [region (a)] can sometimes domi-
nantly seed the first order mode. The linear growth phase is
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Figure 3: Supermode gain rates for the 5keV (a), 12 keV (b), and 20 keV (c) radiation cases detailed in Table 1, using
a per pass cavity loss α = 0.25. Simulation points were determined by decomposing the longitudinal radiation onto the
Gauss-Hermite modes, and are plotted for the lowest three order modes when they could be determined (and are non-
zero). Theory is given by the lines, where the power growth rate 2Λ m ≡ [(g − α) − σ2

ω�2/2−√g(2m + 1)/σeσω ], and
we have replaced g → (1 − α)g so that Λ0 reduces to the infinite pulse per pass gain of [(1 + g)(1− α)− 1].

then initially dominated by the antisymmetric m = 1 mode
through region (b1). As the amplification continues, how-
ever, the radiation approaches a gaussian due to the higher
growth rate of the m = 0, so that it becomes the dominant
component throughout region (b2).

We also show two examples of complex electric field en-
velopes in the linear gain region in Fig. 2. After 40 passes
we see that both the real (red solid lines) and imaginary
(blue dotted lines) parts of E are largely described by the
m = 1 supermode; after 80 passes the pulse has more over-
lap with the m = 0 mode, although there is still a signifi-
cant antisymmetric component from the mode with m = 1.
As evolution continues the pulse becomes more symmetric,
until it is nearly gaussian at saturation.

EXAMPLES FOR A 7 GEV BEAM

In this section we present supermode evolution results
relevant to a low-emittance, 7 GeV electron beam whose
current is 10 A. We detail the electron beam and undu-
lator parameters in Table 1, in which we also include
the saturated cavity power predicted by the 1-dimensional
simulation discussed previously, and the saturated cavity
power obtained from 2-dimensional GINGER simulations
for comparison. We assume a normalized crystal band-
pass σω/ω = 3.4 × 10−6, and a total per pass cavity loss
α = 0.15; in the 12 keV case this could arise from 6%
loss from the mirrors (including 4% loss from the radiation
out-coupling) and an additional 5% loss per pass for each
of two focusing elements.

We show the measured and theoretical per pass gain for
the modes m = 0, 1, 2 as a function of the electron bunch
length σe in fig. 3 for the 5 keV (a), 12 keV (b), and 20
keV (c) radiation. In each scenario the per pass gain de-
creases as the bunch length decreases, until reaching zero
gain for σe ∼ 1/σω. Since the gain decreases more rapidly
for the higher order modes, the cavity pulse becomes more
gaussian as the electron bunch length decreases.

Table 1: Possible undulator and beam parameters for three
different radiation wavelengths produced by a 7 GeV beam
with Ipeak = 10 Amp and ∆γ/γ = 0.02%. The saturated
power Psat given by our 1D code and the 2D code GINGER
were determined assuming mirror losses α = 0.15%.

Parameter 5 keV 12 keV 20 keV

λu (cm) 2.24 1.76 1.50
Nu 1000 3000 3000
K 2.50 1.51 1.05

βx (m) 5.0 9.0 10.0
εx (m·rad) 2× 10−7 2× 10−7 10−7

g 0.42 0.28 0.32
Psat (1D) 120 MW 23 MW 25 MW
Psat (2D) 90 MW 25 MW 16 MW

CONCLUSIONS

We have shown that the linear supermodes of the x-
ray FEL oscillator are the growing Gauss-Hermite modes.
Seeding of these modes by the chaotic undulator radiation
seeds is random, so that the initial evolution may be dom-
inated by higher-order longitudonal modes. Nevertheless,
the lowest order m = 0 gaussian mode eventually domi-
nates due to its larger growth rate, so that the final longitu-
dinal radiation profile is nearly gaussian at saturation.
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