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Abstract

Longitudinal space-charge fields taking place in free-
electron devices are considered in the framework of a three-
dimensional, space-frequency approach. The model is
based on the expansion of the total electromagnetic field
(radiation and space-charge waves) in terms of transverse
eigen-modes of the (cold) cavity, in which the field is ex-
cited and propagates. Using the model, an analytical ex-
pression for longitudinal electric field is derived for a point-
like charge, moving along a waveguide with a constant ve-
locity. This enables comparison of different components of
the resulted longitudinal electric field, including contribu-
tions of forward and backward going waves, of near and
under cut-off frequencies, and others.

INTRODUCTION

Development of experimental technic of electron bunch
compression and of laser induced photocathodes enables
application of ultra short high intensive electron pulses
in free-electron radiation sources. In free-electron lasers
(FELs), a highly efficient super-radiant emission can be
achieved with such pulses, providing a strong coherent
radiation with intensity being proportional to the pulse
charge squared [1]. Unfortunately, longitudinal space-
charge fields give rise to expansion of short electron pulses
along their trajectory, restricting or limiting applications of
intense ultra-short electron pulses [2, 3].

In the present work, longitudinal space-charge fields
considered in the framework of three-dimensional, space-
frequency approach [4, 5]. The model is based on the ex-
pansion of the total electromagnetic field (radiation and
space-charge waves) in terms of transverse eigenmodes of
the (cold) cavity, in which the field is excited and propa-
gates. This approach has been successfully applied for the
analysis of wide-band interactions in free-electron lasers
operating in the linear and non-linear regimes [6]-[9].

The basic equations of the model, originally obtained as
a solution of the wave equations for the electromagnetic
field in an uniform waveguide, are shown to satisfy also
Gauss’s law for electric and magnetic fields. Longitudi-
nal electric field was found in the model analytically for a
point-like charge, moving along a waveguide with a con-
stant velocity. This enables consideration and comparison
of different components of the resulted longitudinal electric
field, such as contributions of forward and backward going
waves, of near and under cut-off frequencies, and others.
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MODAL PRESENTATION OF
ELECTROMAGNETIC FIELD

In the approach, the total electromagnetic field in the
positive-frequency domain is expanded in terms of a com-
plete set of transverse eigenmodes of the medium in which
the field is excited and propagates:������ �� �
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where tilde symbols a positive frequency domain quantity,
����� �� is scalar amplitude of the �th mode (the summa-
tion includes both forward and backward modes) with elec-
tric field �������� and magnetic field �������� profiles,
and axial wavenumber is:
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here � � ��
 and 
 � ��
�
�� is the velocity of light.

Expressions for the longitudinal component of the elec-
tric and magnetic fields are obtained after substituting the
modal representation (1) of the fields into Faraday and Am-
pere equations, where source of electric current density����� �� is introduced:������ �� �
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Evolution of the amplitudes of the excited modes is de-
scribed by a set of coupled first order differential equations:
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Field amplitudes of each mode is normalized via a complex
Poynting vector power:
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and the mode impedance is given by:
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(6)
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Electromagnetic field given by equations (1), (3), (4) is
found as solutions of the Faraday and Ampere law’s of
Maxwell’s equations in the frequency domain. As easy to
show, divergence of the magnetic field is
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where
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Since ���� ��� �� � 	 for �� modes and ���� ��� �� � 	 for
�� modes, the Gauss’s law for magnetic fields
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is also satisfied.
Divergence of the electric field can be expressed as fol-

lows:
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where
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The first term in (10) can be rewritten:
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Therefore
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where ����� �� is the charge density in the positive-
frequency domain and the continuity equation

� 
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is applied.
The last term in Eq. (3) introduces the one-dimensional

(1D) longitudinal space-charge field. In the time domain,
the term corresponds to the field given by:
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where
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are the corresponding charge densities of the unit square.

According to (3), longitudinal electric field is given as a
superposition of 1D longitudinal space-charge field term
(15) and the summation of all �� modes. As will be
demonstrated, 1D longitudinal space-charge field is suffi-
ciently compensated in such a superposition. The problem,
however, is that only a very few first modes are usually
considered in real simulations, and �� modes are often
are not taken into account at all. To formulate equation
(3) for longitudinal electric field in a more balanced way,
transverse dependence of longitudinal current density can
be expanded in terms of the same complete set of eigen-
modes ���� ����:
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here the normalization of �� modes is used. Substitut-
ing the expansion into (3), presentation for the longitudinal
electric field can be re-written:������ �� ��
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THE ELECTRON BEAM DYNAMICS

The state of a particle � is described by a six-components
vector, which consists of the particle’s position coordinates
�� � ����� ��� and velocity vector ��. The velocity of each
particle, in the presence of electromagnetic field, is found
from the Lorentz force equation:
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where � and � are the electron charge and mass respec-
tively, and the Lorentz relativistic factor  � of each particle
is found from the equation for kinetic energy:
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The fields in equation (19) represent the total (DC and AC)
forces operating on the particle, and include also the self-
field due to space-charge.

The current distribution is determined by the position
and the velocity of the particles in the beam:
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Here " � $�� is the total charge of the e-beam pulse with
DC current $� and temporal duration � , and ����� is the
time it takes a particle to arrive at a position �.

In the positive frequency domain, current density of the
drive beam is given by:
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and the excitation equation (4) can be rewritten as follows:
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The resulted expression together with the beam dynam-
ics equations (19), (20) form a close set of equations,
enabling a self-consistent solution of the electromagnetic
fields (radiation and space-charge waves) in electron de-
vices and free-electron lasers.

SINGLE CHARGE

To check applicability of equation (18) to calculations
of longitudinal electric space-charge fields, lets consider a
point-like charge, moving along a waveguide of length %
with a constant velocity !�. In this case, the field ampli-
tudes ������ �� can be found analytically:
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here ��� is transverse position of the particle, and &�� �
�
��
� ��� . Figure 1 demonstrates the frequency depen-

dence of this field amplitudes excited by a point 1 nC
charge, moving with 5.5 MeV energy along a rectangular
15�10 mm� waveguide of the length of % � �	 cm. The
field is checked at the moment when the charge overs the
point � � %��. Both forward and backward going waves
are found to play a comparative role in the calculations,
dominating in the vicinity of cut-off and at zero frequency,
so that no one of them can be neglected.

Field amplitudes (24) results in the following analytic
expression for the longitudinal electric field of the charge:
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Figure 1: Forward (top) and backward (bottom) wave field
amplitudes (24). Arrows show the cut-off frequencies of
the first 3 modes taken into account.
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is the field component corresponding to propagating waves,
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Figure 2: Longitudinal electric field (25) obtained with a single ���� mode (left) and with 5050 ����� modes (right).
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corresponds to cut-off waves, and
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presents 1D longitudinal field term.
Figure 2 demonstrates the field (25) found at the waveg-

uide axis at the moment when the charge over the point
� � %��. The calculations were carried out with a single
���� mode and with 5050 ����� modes (��( � �		),
respectively. As seen from the pictures, step-like 1D lon-
gitudinal field term (15) is totally compensated at long dis-
tances from the charge, mainly with the field component
originated from cut-off waves, resulting in a short-range
field. At closer distances, propagating waves are play-
ing an important role too. Convergence of the calcula-
tions is found to be extremely slow and is demonstrated
in the figure 3. Lorenz transformed (to the Lab system)
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Figure 3: Longitudinal electric field (25).

Coulomb field of the point charge is given too for compari-
son. Note, that Coulomb field considered here does not ful-
fill the boundary conditions at the waveguide walls; how-
ever it can be close to a correct solution if the waveguide
axis is only considered.

CONCLUSIONS

Space-frequency model is found to satisfy the full set
of Maxwell’s equations, including Gauss’s law for electric
and magnetic fields. Expressions describing longitudinal
electric field in the model include, in addition to a sim-
ple step-like 1D term, summation over both forward and
backward going waves, which contribute mainly at zero
frequency and near cut-off. No one of these terms can be
neglected in the expressions. Calculations of longitudinal
electric field of a point-like charge according to Eq. (3) or
(18) demonstrate an extremely slow convergence. To im-
prove the efficiency of the calculations, a simple 3D ap-
proximation for space-charge fields should be applied.
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