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Abstract
A compact Cherenkov free-electron laser is studied 

for a double-slab structure with no incident field or
electromagnetic feedback mechanism. The simplified
model is composed of a rectangular wave-guide partially
filled with two lined parallel dielectric slabs and a sheet
electron beam. The interaction between the electron beam
and the electromagnetic mode is described with the
macro-particle approach. The coupled equations are
derived and solved numerically with the parameters of an 
ongoing experiment, demonstrating the amplification of
emitted power from spontaneous emission.

INTRODUCTION
There is increasing interest in the development of the

terahertz radiation sources in recent years because the
requirements of applications in medical, industrial and
material science [1-9]. As is known, the Cherenkov free-
electron lasers have an advantage over the usual undulator
free-electron lasers, and they can generate terahertz
radiation with low energy electron beam [10], which
means that the large electron-beam-serve system is not
necessary. We planned to develop a compact terahertz
Cherenkov free-electron laser with moderate (~10 mW)
average power. To achieve this goal, a compact electron
beam source is being developed, and a double-slab
Cherenkov free-electron laser device is being studied. For
a preliminary lasing experiment, this device is designed to
generate the millimeter wave. The device is composed of 
a rectangular wave-guide loaded with double dielectric
slabs, and between them is the vacuum space for electron
beam to go through. The slab is with a thickness of 650
μm and the vacuum width is 1000 μm. The dielectric
medium is chosen as silicon since it has a relatively high
dielectric constant, r =11.6, with which the device can
produce radiation from millimeter to terahertz wave. The
electron beam source generates a round beam with an 
average radius of 300 μm. The beam current is about 1 
mA and the energy is 50 keV.

Such a device can be designed to operate at a resonator
mode or an amplifier mode. In this paper, we focus on the
amplifier mode. The incident field is not involved, and the
emitted field is amplified from the spontaneous emission.
The analysis of the dispersion relation and the small-
signal gain for the double-slab structure has been carried
out based on the hydrodynamic model [11]. This paper
aims at the nonlinear analysis of the interaction between
the electromagnetic wave and the electron beam. Macro-
particle approach is used to describe the interaction, and 

the system of equations is numerically solved,
demonstrating the evolution of emitted wave from
spontaneous emission to saturation.

FUNDAMENTAL THEORY
The system to be analyzed consists of a rectangular

wave-guide partially filled with two lined parallel
dielectric slabs and a sheet electron beam travelling in the
vacuum area between the two slabs, as shown in Fig. 1. It
is assumed that dielectric slabs are much wider than the

beam width in the y direction, and outside the slabs is the 
pad of perfect conductor. The beam electrons interact
with the electromagnetic mode of such a structure, 
causing energy to be transferred between the beam and
the electromagnetic mode. The mode is restricted to the
TM polarization because a nonzero z component of
electric field is required for the energy exchange
interaction.

Figure 1:  Double-slab Cherenkov free-electron laser

We derived the electromagnetic fields in the vacuum
region (1) and they are 
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In the dielectric regions (2) and (3), the electromagnetic
fields read 
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Considering the boundary conditions, we get the
passive (no beam) dispersion relation
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The linear analysis tells that the electron beam interacts
with the mode with phase velocity equal to the average
velocity of the electron beam, i.e., kav . With the
parameters mentioned above, a numerical search provides
the synchronous point ),( 00 k . For a 50 keV electron

beam, we found the synchronous frequency is 0f 45.96

GHz, and the wave number 2332.34 m0k -1. Using

),( 00 k and the above expressions, the ratio of the

other coefficients to can be achieved, and we note

them as 
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to be imaginary, and we rewrite it as 
nmQ , 1

xj1 , where

x  is real.

INTERACTION DYNAMICS 
To evaluate the interaction between the electron beam

and the electromagnetic mode, and the coefficient

varies with the interaction distance written as . This 
amplitude function is determined by the power
exchange interaction between the electron beam and the
electromagnetic mode. An equation describing this
interaction can be derived by starting with Poynting’s
theorem [12],
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where S is the power de si , W is the local energy
density, and the term

n ty
EJ describes the interaction

mechanism. For this calculation, the desired solution is 
the steady state, for which the explicit time-dependent
term in Eq. (8) vanishes. Additionally, all power flow is 
in the z direction, and it has been assumed that the
electron motion is in the z direction as well. This allows
Eq. (8) to be simplified to
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We can integrate over the cross-section of the system, and
furthermore, the system is assumed to operate at a single 
frequency . For the present purpose we average out
over one period of the wave 2T , thus, we have 
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where is the electron beam dimension in y direction.
The first term is the total average power, which
propagates along the system. According to the definition

d2

yxz HES , the integration of left-hand side gives

T hg

hg

d

zz EdyJdxdt
T

zC
dz
dP

0 )(

2

0

2 1)(
2
1

 (11) 

where

gg
zCkc

dP xx
x 22sinh

2
)(

[2
0

22

))(2sin()((
4

)(
2

2
21

2
22

0

2
2

2

hgQQ
zCkc

r

))(2cos(2)(2 22221
2
22

2
212 hgQQQQh

))2cos(2)2sin()( 222212
2
22

2
21 gQQgQQ

))(2sin()((
4

)(
3

2
31

2
32

0

2
3

2

hgQQ
zCkc

r

))(2cos(2)(2 33231
2
32

2
313 hgQQQQh

))]2cos(2)2sin()( 332313
2
32

2
31 gQQgQQ .

The electron beam interacts with the longitudinal electric
field in the vacuum region, i.e., , then the Eq. (11)
can be written as 
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The electron beam current density is given by
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where is summed over the electron in the beam, and 
are the z component of the velocity and

spatial coordinates, respectively, of the  electron. 
Motion in the directions orthogonal to the propagating z 
axis is ignored in this treatment. With the definition of the
current density and the expression for , the
integration of the right-hand side of Eq. (12) is 
straightforward and it reads 
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This equation can be written as 
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and it can be rewritten as 
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Since it has to be satisfied for any , we conclude
that
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which describes the dynamics of the amplitude and phase
of the electromagnetic field and its dependence on the
distribution of particles.

The equation of motion of electrons is more convenient
to use the single particle energy conservation since one
dimension motion is assumed, and we have 
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To complete the description of the particles’ dynamics we 
have to determine the dynamics of the phase term i .
According to its definition, we find
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The last three equations form a closed set of equations, 
which describes the interaction.

NUMERICAL COMPUTATION
To numerically solve the equations, it is necessary to

determine the initial conditions. At the beginning of the
interaction region, fluctuations in the charge density of
the electron beam induce spontaneous emission, or shot
noise. The shot noise was widely studied [13~15], and it
is more convenient to analytically estimate the electron 
beam shot noise at the interaction region input. We apply
those ideas to the system desired here. 

The shot noise fluctuations are governed by Poisson
statistics, and it has the form

t
e
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where 2n is the mean squared fluctuation in the

number of electrons in the observation time t , and I  is 
the average current. These number fluctuations will give
fluctuations in the time-averaged quantities computed in
the dynamical equation. For Eq. (18), the time-averaged
quantity at 0z  can be roughly written as [15] 
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where x is an average value of electrons’ position.
Substituting Eq. (21) into Eq. (22), we have
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The term )cosh( xx is found to be of order 1 and
usually ignored. Taking the observation time as a single
cycle of the electromagnetic mode, Eq. (18) can be
integrated over a single cycle to yield 
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It is straightforward to use the finite difference methods
to solve the coupled equations. The beam was specified to
have a uniform square cross section of 600 600 μm2.
The number of particles used in simulation was 103. At 
the entrance 0z , we assume that monoenergetic
electrons are randomly distributed in phase space and
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positions in x direction. Equations for electron dynamics
for a given field along the interaction region are solved at
first. Knowing the modified electron distribution in phase
space by solving Eq. 20, the field in the next space step is 
obtained by solving Eq. 18. The results of this calculation
are given in Fig.2 and 3.

The power gain is shown in Fig.2. The saturation takes
on around 1.2 m of the interaction distance, where the
power gain comes to its maximum ~37 dB. Also plotted
in Fig. 2 is the wave power, demonstrating the
amplification of emitted power from spontaneous
emission to saturation. The variation of electrons’ phase
in phase space is shown in Fig. 3. The electrons in-phase
with the wave are decelerated while those anti-phase are
accelerated. With the increase of the interaction distance, 

the bunching process continues and the electrons’ energy
spread grows. At last, the electrons are strongly bunched
and the energy spread (peak-to-peak) comes to 
=9.7x10-4 ( max=1.09833, min=1.09736).

CONCLUSION
We studied the wave-beam interaction in a double-slab

Cherenkov free-electron laser with using the macro-
particle approach. A set of coupling equations are derived
and numerically solved to demonstrate the amplification
of the wave from spontaneous radiation to saturation, with
the parameters of our ongoing experiment. The power
gain was worked out and the radiation power was 
estimated, as well as the interaction process was well
understood. The results are helpful for designing and
understanding the ongoing experiment.

Figure 2: Evolution of power gain (solid line) and
radiation power (dotted line) along the interaction
region.
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