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Abstract
In this paper, we present an analytical three-dimensional

theory of free electron lasers. Under several assumptions,
we arrive at an integral equation similar to earlier work car-
ried out by Ching, Kim and Xie, but using a formulation
better suited for the initial value problem of Coherent Elec-
tron Cooling. We use this model in later papers to obtain
analytical results for gain guiding, as well as to develop a
complete model of Coherent Electron Cooling.

INTRODUCTION
Existing work on the analytical three-dimensional theory

of FELs ([1], [2] and citations therein) provide a number of
useful results, and cover transverse modes and dispersion
relations thoroughly. However, these approaches lack sev-
eral features useful for applications to Coherent Electron
Cooling (CeC) [3]. Specifically, existing theory for the ini-
tial signal for the kicker considers an infinite electron beam
and provides an initial value problem for the FEL [4]. It
is therefore desirable to develop a three-dimensional the-
ory of the FEL process that is compatible with this work.
With the existing formalism in [4] in mind, we develop here
a three-dimensional theory of FELs which can be read-
ily generalized to the case of the infinite beam, and which
quickly reduces to the one-dimensional theory in [2].

We treat the transverse dynamics of the electron beam as
a parameter whose dynamics are dictated by the Maxwell
equations. The beam is assumed to have no transverse
velocity spread, and the only magnetic field present is
assumed to be an helical wiggler field. Operating in a
transverse Fourier space, we obtain an integral equation
in which the kernel is the Fourier transform of the trans-
verse beam profile. A mode expansion obtains dispersion
relations for each transverse mode as a function of their
eigenvalue. For an infinite beam, the Fourier transform is a
delta function, and results in an equation similar to the one-
dimensional theory presented in [2]. Some specific appli-
cations of this theory are discussed in another conference
proceeding.

EQUATIONS OF MOTION
To develop this model, we employ the Maxwell-Vlasov

coupled equations to obtain a linearized equation of motion
for the current density, which is directly related to the phase
space distribution.
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Vlasov Equation
The equations of motion as a function of z are given by
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Defining H = E + E0 where E0 is the nominal energy of
the electron beam, and linearizing the phase space density
f = f0 + f1 where f1 is small gives the linearized Vlasov
equation:
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It is now necessary to solve for the vector potential and
space charge fields to obtain the full equations of motion.

Maxwell Equations
The transverse Maxwell equations in Fourier space are

given by (
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The transverse current is related to the longitudinal cur-
rent by assuming that the transverse velocity is given by
~v⊥ = K/γ0(cos kwzêx−sin kwzêy) for all electrons. This
allows the solution in Fourier space of the potential ~Aw · ~A⊥
to be
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where the Fourier transform on the current density is de-
fined by
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Space charge is accounted for by the Maxwell equation

∂tEz = −4π
c
jz (6)

Applying the identical Fourier transform on jz to Ez gives
the space charge equation

Ẽz = − 4πı
cνωr

j̃z (7)
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These two results may now be inserted into the full coupled
Maxwell-Vlasov equation.

Maxwell-Vlasov Equation

At this point we are able to write down the full
Maxwell-Vlasov equation under the assumption that f0 =
n0F (E)G(~r⊥) where the normalization is such that inte-
grating over energy and the transverse coordinates gives
the longitudinal density n0. Under this assumption, the
Maxwell-Vlasov equation takes the form of an integral
equation given by equation 8 where U0 is related to initial
seeding, and
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Introducing normalized coordinates simplifies the equa-
tion as
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dÊeı(Ĉ+Ê+k̂2
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⊥)(ẑ′−ẑ)
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At this point, the problem is solving the integral equation
in the transverse Fourier space. For a finite beam size,
a mode expansion similar to the methods in [1] can be
employed, while for an infinite beam direct solution by
Laplace transform is possible, and is the method of choice
in GANG’SPAPER. I highlight both results briefly below.

INFINITE BEAM LIMIT

The limit of an infinite, homogeneous beam is useful for
applications to the theory of CeC, as analytical results exist
in the modulator [4] and the kicker [5]. In the limit of an
infinite, homogeneous beam, G̃(k̂⊥ − q̂) = δ(k̂⊥ − q̂) and
the integral equation becomes a simple differential equa-
tion in j̃z . In this case, solution may be carried out by
Laplace transform, as in [2], but with the identification that
Ĉ 7→ Ĉ + k̂2

⊥. We therefore see that, for an infinite beam,
finite transverse size is directly equivalent to a detuning.

The explicit equation of motion for j̃z , solved through
Laplace transform, is given by
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where D̂ is the familiar integral
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dÊ F̂ ′

s+ ı(Ĉ3D + Ê)
(11)

which is examined in greater detail in [6], where Ĉ3D =
Ĉ + k̂2

⊥. It is studies of this particular model that are re-
quired for the solutions presented in [7] and further discus-
sion is left there.

FINITE BEAM
For the case of finite beam, solution can best be achieved

by solving the eigenmode problem for the transverse beam
profile, searching for a solution of the integral equation

ψn(k) = ωn

∫
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In this case, it is convenient to expand the solutions for the
current equation as
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where φn is an eigenmode of the G̃ kernel. Here the an
are in general a function of ẑ, Ĉ, and k̂⊥. A differential
equation is obtained for the coefficients of φn in terms of
the eigenvalues of the mode, which arises from the integral
equation 9
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where Qm,` =

∫
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has an exponential or faster drop-off for large q, then these
terms will generally be fairly small, as the integrand is close
to zero for q < 1 and drops off exponentially outside that
range. This lends itself to a perturbative expansion in the
Q matrix to get at least the first order coupling between
modes.

The integral equation can be solved by use of a Laplace
transform. Applying the Laplace transform in ẑ gives the
equation for the Laplace transformed A` to be[(
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where a quantity G` is the initial condition quantity inte-
grated with the `th eigenmode.

To zeroth order inQm,` the equations of motion for each
mode behaves like a one-dimensional growth with the root
equation being modified by appropriate factors of ω`. The
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real part of the roots are a monotonically decreasing func-
tion of ω`, so that the minimal value of ω` dominates.

The first order inverse in powers of Qm,` is given by
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THE EIGENVALUE PROBLEM
The first obvious problem is to consider calculating the

eigenvectors and eigenvalues of the transverse beam size
kernel, G̃(k̂−q̂). A convenient method for doing this would
be to consider a countable set of orthonormal functions in
k-space and then write down an equation for the series ex-
pansion of the eigenfunctions in terms of orthonormal func-
tions

Suppose the eigenfunction can be written as

ψ` =
∑
m,n

a`,m,nFm(k̂) cos(nθ) (16)

while a Gaussian beam profile, for example, can be written
as a series of Bessel functions
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where θ and φ are the angular components of k⊥ and q re-
spectively, and J` is the `th Bessel function. Due to the
properties of the angular integrals, each angular mode is
independent, and the series expansion boils down to calcu-
lating the solutions to the eigenvalue equation∫

dk̂ k̂Fm(k̂)Jm(L2k̂q̂)e−L
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If one can safely assume that Fm can be expanded as a
series of orthonormal functions, then the series may be ex-
panded and each individual term in the series is given by
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where ψn is some orthonormal function, and it is assumed
that
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Once the individual components are solved, then it is
relatively straightforward to calculate the corresponding
eigenvalue by evaluating
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Further elaboration would require a particular choice of
expansion functions. It should be clear that λm = 1/ωm ≤
1, so that the finite transverse size suppresses the growth of
the individual modes.

FEL GREEN FUNCTION

From these results, a Green function for an initial phase
space distribution can be calculated, given an initial pertur-
bation of the form
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while the phase space Green function is obtained from the
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equation of motion as
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)
−(

1− e−ı(Ĉ+P̂0+k̂
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Here the sj refer to the roots of the dispersion relation.
These Green functions neglect the oscillating term that
arises in the FEL process due to the pole at s = ı(P̂ + Ĉ)
which becomes a decaying root for a thermal spread in f̃1.

CONCLUSION
We have presented a model for the three-dimensional dy-

namics of a high gain free-electron laser which generalizes
to the infinite beam limit readily, and which provides a rel-
atively simple set of equations for the dynamics of the indi-
vidual modes of a finite transverse beam profile. An avenue
is presented for approximating the transverse eigenmodes,
and a preliminary though incomplete study of this method
suggests that the finite beam model includes optical guid-
ing.
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