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Abstract

We solve linearized Vlasov-Maxwell FEL equations for
a 3-D perturbation in an infinite electron beam with
Lorentzian  energy  distributions using  paraxial
approximation. We present analytical solutions for various
initial perturbations and discuss the effect of optical
guiding in such system.

INTRODUCTION

Developing complete theoretical model of Coherent
electron Cooling (CeC) [1] is important for gaining
insights into the physics of the processes, studying the
scaling law and benchmarking simulation codes. Deriving
analytical formula under certain assumptions is one of the
key-stone in this process. For instance, the modulation
process can be described by a close form solution
obtained for an infinite electron beam with kappa-2
velocity distribution [2]. This solution is applicable to a
realistic case when the transverse Debye radii are much
smaller than the transverse size of electron beam.

In this work, we try to derive an analytical 3-D solution
for the FEL amplification process under assumption of
infinitely wide electron beam. 1D FEL theories has been
applied to the amplification process in CeC, naturally
assuming an infinite electron beam and longitudinally
propagating radiation fields, i.e. k, =0 [3]. While 1D
FEL theory provides closed-form analytical solutions for
certain energy distributions, the diffraction effects are
ignored. Hence, the transverse profile of the amplified
modulation can not be obtained. In present day analytical
3D FEL theory, applied to specific spatial profiles of
electron beam [4-6], the solutions are usually expanded
into infinite number of modes determined by specific
boundary conditions. In the high gain limit, the transverse
profile of the electron modulation is determined by the
mode with largest growth rate. However, for FEL with
nominal or relatively short length, transient effect may not
be ignored and thus presents difficulties in analytical
evaluation of the amplification.

In order to incorporate the diffraction effects into
analytical solution capable of describing the transient
effect, we investigate the FEL amplification process for
an infinite electron beam. The results derived under this
assumption are applicable if the electron beam size is
much larger than that of the amplified current modulation.
Similarly to 1D FEL model, we assume the unperturbed
electron spatial density is a constant and electrons are
moving along their trajectory determined by the undulator
field with no transverse dynamic effects from the
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radiation field or space charge. However, we allow the
radiation to propagate with an angle with respect to the

longitudinal direction, i.e. k;, # 0. Starting from the self-

consistent paraxial field equation, we arrive to a third
order ordinary differential equation (ODE). Analytical
solutions are obtained for various initial conditions and
the effect of optical guiding is discussed.

EQUATION OF MOTION

We use standard assumptions that the amplitude of the
radiation field varies slowly with respect to the undulator
period and that fast oscillation terms can be dropped. The
paraxial equation on the amplitude of the radiation field is

[4]
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where E(z,r,,C) is the complex amplitude of the

radiation field, @ is the radiation frequency, C is the
detuning, g, is the nominal electron energy, P is the

electron energy deviation, g is the electron deflection
angle, F(P) is the energy distribution function and j, (r )

is the transverse spatial distribution of the unperturbed
electron beam. Assuming j (r )=, , the Fourier

transformation of eq. (1) with respect to transverse spatial
coordinates X and Y yields
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into eq. (2), we get the following:
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Using normalized variables defined in [4] and [7], eq. (4)
becomes
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In order to proceed further, we assume Lorentzian energy
distribution, i.e.

1, Emec3/e

p=yTc/w is the pierce parameter,
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Inserting eq. (6) into eq. (5) results in the following:
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It has been demonstrated that integro-differential equation
with the form of (7) can be reduced to a third-order ODE
(see Chapter 6.3.3 and 6.3.4 of [7]). Eq. (7) is transformed

into
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where we defined a new variafble as:
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The solution of (8) is the sum of three eigen-modes, i.e.
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where the eigen-value 4 are determined by
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and A, (C‘, ]Ql) are determined by initial conditions at the
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FEL entrance. From eq. (3) and eq. (10), the complex
amplitude of the radiation field is given by
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The slowly varying radiation field amplitude is related to
the current modulation via [4]
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In the transverse wave vector domain, their relation is as
follows

(12)
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Inserting eq. (12) into (14) leads to
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From eq. (12) and eq. (15), the coefficients 4 can be
explicitly written as the following matrix form
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where E(O, é,lél), ]N'I(O,CA‘,IQ ) and E)a (0 C.k )are initial

conditions defined by a specific problem. In the following
section, we will carry out calculations for excitation by
external field with various pulse profiles.

EXCITATION WITH EXTERNAL FIELD

If the initial seeding of FEL is solely from external
field, the coefficients 4, can be derived from eq. (16) as
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where i, j,k=1,23and € is the Levi-Civita symbol. For

~ A=Ak + Ak,

simplicity, we assume the transverse profile of the
external field is Gaussian:

E .k )=E,F,Clesl-k262),  (18)
where & | is a parameter describing the transverse range
of the external field, F (C ( ) is a function describing the
frequency content of the external field and Eim‘ is a

parameter determining the strength of the excitation.
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Instantaneous Pulse
For an instantaneous excitation at the FEL entrance
2 =0 described by Dirac delta-function §(¢), F, (é) is just

a constant independent of C. Without loss of generality,
we assume

F(¢)=1. (19)
Thus the external field is written as
Ee.rt(kAL):Eini exp( k2 Az) ’ (20)
and the coefficients A is
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Inserting eq. (21) into eq. (15) generates
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The current density modulation is given by the inverse
Fourier transformation of (23) with respect to & , k, and
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C,, and integrating over k and k, gives:
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As seen from eq. (26), the longitudinal evolution of the
current density is identical to that in the 1D FEL theory,
while the transverse evolution is described by a Gaussian
function.

Gaussian Pulse

Consider an excitation of Gaussian pulse with finite
duration, i.e.
F(¢)=ec. (28)

2
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Figure 1 Amplitude of current density modulation at
Z =6: a) surface plot of density as a function of the radius
and time for § =1; (b) contour plot of (a); (c) surface

plot for & =2; (d) contour plot of (c). By technical
reasons the r and t differ from 7 and 2y2ct . The scaling
st p T, 2ylct = 0.6+ L.

15 30

Inserting (17), (18) and (28) into eq. (15) and conducting
the inverse Fourier transformation results in

a4 7/4 ~
372Eim'
47°6. p

s

i, p,z,1) = et g2k li=d) ]:désd](r’ é3d )

(29)

3

X 2 4; (é3d )ﬂi (é3d )el’ (€l o272 (el sy

i=1
where

[(I" C3d) J' (w—cm)za, (ofzézt XJ (Vf)d (30)
0

In general, the integral in (30) should be evaluated

numerically. Fig.1 shows two distributions obtained by

numerical integration of eq. (29) for 6 =1and 6 =2

for initial Gaussian pulse witha-t =0.1. While the initial

spot sizes differ by a factor of two, after six gain lengths
the sizes become essentially identical. This is clear
indication that the FEL system works in the diffraction
dominated regime.

Monochromatic Wave

In case of a monochromatic wave at the FEL resonant
frequency:

F,(C)=8(C)- (31)

and eq. (15), (17), (18) and (31) give:
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Figure 2. Profiles of current density for the

monochromatic wave. They are normalized to their value
at #=0. (a) profiles for 6, =1 at various locations along

FEL; (b) profiles z =15 for various initial sizes, & .
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Figure 3. Transverse rms size of the density modulation
and radiation power along the length of FEL. Only the
growing mode is taken into account. (a) the rms size of
the density modulation and the radiated power for 6 =1.

(b) asymptotic dependence of the rms size of density
modulation for initial size 6, =0.3;
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where f = [k +]€j and we assume & =g, =6, for

simplicity.
Fig. 2 shows results of numerical integration of eq. (32)

for various Z and O | . Fig. 2 (a) suggests that the

transverse size keeps growing along the FEL. In order to
investigate the nature of this growth, we studied the
dependence of the transverse rms spread of the density
modulation and that of the radiation power as function of
the length along the FEL. As shown in fig.3 (b), the rms
size of the density modulation grows near-linearly during
few tens of the gain length (i.e. in a case of any practical

FEL). This dependence would switch into one~ P
extremely large Z ~ 100, but this unphysical area is off
interest.

in an
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DISCUSSION

Because the amplification of the plane wave in an FEL
with infinitely wide beam depends on its propagation
angle via changing the detuning from the FEL resonance
9): 63 ; =C, —k. One can expect that this will confine

effective amplification to a narrow cone alone that axis of
the FEL and, therefore, some optical guiding of the
optical beam. Our numerical studies and analytical
estimates showed that in a typical FEL this effect results
in near-linear RMS size grows. Even though the growth
of the transverse beam size is smaller than in free space
case, the optical guiding FEL effect by an infinite electron
beam is much smaller and is different from that by a beam
with finite size.

SUMMARY

We obtained results resembling some aspects of the 1D
theory, especially for the longitudinal dynamics. However,
we successfully incorporated diffraction into the evolution
of the transverse density modulation profile, which is of
critical importance for studying the transverse coherence
of the electron beam in CeC. For few selected initial
conditions, the spatial domain solutions were expressed
through 1D or 2D integrals, which can be readily
numerically integrated.

We showed that while FEL dispersion provides some
optical guiding, it is very different from that provided by
the finite size electron beams.
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