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Abstract 
Future FELs require femtosecond and even sub-

femtosecond timing precision over the entire facility. To 
meet this timing demand, optical techniques based on 
modulated cw lasers or ultrafast pulsed lasers have been 
investigated intensively. It has recently been shown that 
the timing system based on ultrafast fiber lasers and 
timing-stabilized fiber links enables long-term stable, sub-
10-femtosecond level synchronization [1]. In order to 
achieve sub-femtosecond level synchronization, the 
optimization of timing jitter in ultrafast fiber lasers is 
required. In this work, by operating the fiber lasers at 
close-to-zero intra-cavity dispersion, we optimize the 
timing jitter of ultrafast fiber lasers toward sub-
femtoescond level. The measured timing jitter of 80-MHz 
Er-fiber and Yb-fiber lasers is 70-attosecond and 175-
attosecond when integrated from 10 kHz to 40 MHz 
offset frequency. To our knowledge, this is the lowest 
high-frequency timing jitter from ultrafast fiber lasers so 
far. The sub-100-attosecond timing jitter from optical 
master oscillators is the first step toward attosecond-
precision FEL timing systems. 

INTRODUCTION 
In order to generate and manipulate femtosecond X-ray 

pulses in X-ray Free Electron Lasers (XFELs), tight 
synchronization of electron beam-driving RF sources and 
various optical lasers is required. To meet this stringent 
timing requirement for femtosecond and eventually sub-
femtosecond precision, the use of optical techniques (both 
cw laser-based and pulsed laser-based) has been actively 
investigated in the last few years [1,2,3]. Recently, 
modulated cw laser-based timing systems have been 
successfully installed in real FEL facilities [2,3], which 
shows the promise and potentials of optical timing and 
synchronization systems. 

The use of optical pulse trains from femtosecond mode-
locked lasers has many advantages for timing distribution 
and synchronization in FELs. Figure 1 summarizes the 
schematic and principle of the timing system based on 
ultrafast lasers. Because the high-frequency timing jitter 
of mode-locked lasers can be extremely low (can be 
below a femtosecond range) [4], mode-locked lasers can 
serve as an ultra-low-jitter optical master oscillator 
(OMO). By locking the mode-locked laser to a stable RF 
master oscillator (RMO), one can simultaneously exploit 
excellent phase stability of RMO in the low offset 
frequency and ultralow timing jitter of OMO in the high 

offset frequency. In addition, by employing optical cross-
correlation techniques, one can stabilize hundreds-meter 
fiber-optic timing links with sub-6-femtosecond stability 
maintained over more than 10 days [5] and further 
synchronize mode-locked lasers with sub-femtosecond 
stability for many hours [1]. Because ultralow-phase 
noise RF signals are encoded in the repetition rate of 
optical pulse trains, one can also extract ultralow-phase 
noise RF signals with femtosecond relative stability 
maintained for many hours [1,6], which can be used for 
driving the accelerators. Finally, the optical pulse trains 
can be directly used for optical amplifier seeding, E/O 
sampling and electron beam arrival time monitoring [7], 
and high-resolution down conversion of RF signals [8]. 
Note that each component for sub-10-fs precision pulsed 
timing system (e.g., stable, low-jitter femtosecond lasers, 
timing-stabilized fiber links, balanced optical cross-
correlators, and stable microwave-optical synchronizers) 
is also commercially available nowadays.  

Over the last decade, there have been great 
advancements in the performance and stability of ultrafast 
fiber and solid-state lasers, which now makes them as an 
attractive option for FEL OMOs. In particular, it turned 
out that standard passively mode-locked fiber or solid-
state lasers can already achieve sub-10-fs short-term (e.g., 
>1 kHz offset frequency) timing jitter, when measured by 
direct photo-detection, selecting one RF harmonic 
component, and measuring the phase noise of the RF 
component by signal source analyzers [9,10,11]. In order 
to achieve sub-femtosecond precision timing and 
synchronization, it is necessary to further optimize the 
timing jitter of ultrafast lasers into the attosecond regime. 
Previously, the optimization of timing jitter in ultrafast 
lasers has been limited by the measurement resolution of 
photodetection and signal source analyzers, a few fs level 
over the Nyquist frequency at best.  

In this paper, we employed a sub-20-attosecond 
resolution balanced optical cross-correlation (BOC) 
method to measure and optimize the timing jitter of 
ultrafast fiber lasers. By operating the fiber lasers at 
close-to-zero intra-cavity dispersion condition, we find 
that the high-frequency timing jitter can be reduced down 
to sub-100-attosecond levels. The measured timing jitter 
of 80-MHz repetition rate Er-fiber and Yb-fiber lasers is 
70-attosecond and 175-attosecond, respectively, when 
integrated from 10 kHz to 40 MHz offset frequency. To 
our knowledge, these performances are the lowest high-
frequency timing jitter from ultrafast fiber lasers so far.  
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reason why the Yb-fiber lasers have higher jitter than Er-
fiber lasers is mainly due to higher cavity loss introduced 
by grating pairs (lower cavity Q-factor). We believe that 
the jitter performance can be significantly improved by 
replacing the grating pair to lower loss devices, such as 
photonic crystal fibers or chirped mirrors, which provide 
negative dispersion at 1 μm.   

SUMMARY AND DISCUSSION 
In this work, by operating the stretched-pulse fiber 

lasers at close-to-zero intra-cavity dispersion and 
carefully measuring the jitter by the BOC method, we 
optimize the timing jitter of ultrafast fiber lasers toward 
the sub-femtoescond level. The measured rms timing 
jitter of 80-MHz Er-fiber and Yb-fiber lasers is 70-
attosecond and 175-attosecond, respectively, when 
integrated from 10 kHz to 40 MHz offset frequency. To 
our knowledge, this is the lowest high-frequency timing 
jitter from ultrafast fiber lasers so far. The demonstration 
of such low jitter lasers is, we believe, the first step 
toward the attosecond-precision FEL timing systems.   

In order to be employed in real FEL facilities, however, 
two major issues should be further addressed. First, the 
ultrafast lasers (as the OMO) should operate in a very 
reliable way without mode-locking state drop-outs or 
operation interruptions. Fortunately, there has been 
remarkable progress toward this direction recently – for 
example, some commercial lasers based on 
semiconductor saturable absorbers and polarization-
maintaining fiber show excellent long-term stability. It 
will be interesting to test the stability of such lasers over 
several months to evaluate its suitability as the FEL OMO. 
Second, the excess noise and shot-noise limit in the 
optical-to-RF conversion process should be minimized. It 
has been shown that the use of electro-optic sampling and 
feedback control enables long-term stable RF signal 
extraction from optical pulse trains with less than 10 fs 
drift over many hours [1, 5, 6]. As the next step, the 
demonstration of the same performance in a real FEL 
environment is necessary for future deployment of such 
techniques. In the high offset frequency, the shot-noise 
limited noise floor, typically ranging from -140 dBc/Hz to 
-160 dBc/Hz, should be also suppressed below -160 
dBc/Hz to regenerate RF signals with sub-femtosecond 
jitter relative to the delivered optical pulse trains.  
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