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Abstract 
In recently constructed FEL accelerators, the temporal 

stability of an accelerated electron beam is the most 
crucial problem to achieve stable lasing. The demanded 
temporal stability is less than several ten femto-seconds 
(rms) to stably keep an extremely high peak current 
formed at a bunch compressor, as well as attaining the 
required temporal resolution of a pump-probe experiment. 
To realize this stability, an elaborate rf distribution and 
synchronization system for the accelerator is strongly 
needed. One of the most promising methods to realize 
such a system uses a unified instrument involving both 
laser and electrical technology. Because the system can 
control the rf phase based on optical wavelength 
resolution, and it can reduce the effects of environmental 
perturbations arising from temperature variation, 
vibration and electrical noise. On the other hand, when 
designing the system, the selection of optical signal 
transmission methods using a comb-pulse train or a 
sinusoidal wave is crucial. Many institutes already 
employed a unified system comprising necessary 
instruments, such as optical-fiber signal transmission, in 
accordance with their own selection. We recently 
obtained less than 22.7 fs (rms) temporal fluctuation of 
electron beams at XFEL/SPring-8 “SACLA” by using this 
kind of system. 

INTRODUCTION 
 Recent sophisticated accelerators, such as an X-ray 

free-electron laser (XFEL), [1,2,3,4], must have brilliant 
and very stable electron beams. In the case of the XFEL 
accelerator, longitudinally and transversely stable electron 
beams with low emittance, low energy spread, low energy 
drift/jitter and low temporal jitter should be equipped for 
stable lasing. For example, bunch compression stability to 
constantly maintain the electron peak current and width, 
such as 1 kA and 30 fs (FWHM), of a pulse-compressed 
beam is directly reflected in the lasing stability of the 
XFEL [5,6]. One of the key issues to realize stable bunch 
compression is an elaborated rf and timing distribution 
system using an ultra-low noise rf signal, as a time 
reference, to drive cavities, which give an energy chirp 
along an electron bunch for bunch compression. 
 On one hand, the elaborated rf and timing distribution is 

also crucial for an X-ray pump-probe experiment [7] 
using a Ti:Sapphire laser as a pump with a pulse width of 
below 100 fs (FWHM) and a 30 fs (FWHM) X-ray laser 
as a probe with a pulse width of several tens of femto-# 

seconds. Both lasers have to be precisely synchronized by 
a mode-locked device using an ultra-low noise rf signal. 
This temporal resolved experiment traces the temporal 
and structural evolution of a material excited by a pump 
laser in the X-ray diffraction imaging method. The 
temporal resolution of this method thus demands the 
order of a femto-second region for observing the 
molecule and atom dynamical distribution due to the 
phase change of the material by photo-excitation [7]. 
To ensure the temporal stability and resolution in the 

XFEL, as mentioned above, ultra-low noise and 
extremely stable (without drift) rf and timing signals 
should be prepared for an XFEL accelerator and 
experiments. Furthermore, all of the components, 
including data acquisition (DAQ) systems related to rf 
sources, beam monitors and experiments, should be 
synchronized by one reference rf signal or its harmonics, 
or sub-harmonics generated by one master oscillator to 
guarantee temporal stability. This stability is finally 
reflected in stable lasing and in the quality of the 
experimental data. 
In the case of the XFEL, the machine length including 

the accelerator, a light source using undulators and an 
experimental area could be more than 1 km long. 
Therefore, to distribute the ultra-low noise rf signal and 
time reference signal, an optical-fiber cable is the best 
solution to reduce signal transmission loss and to 
eliminate high-level noise generated by a high-voltage 
pulser for a klystron, rather than traditional coaxial cables. 
However, at the individual end stations of the optical fiber 
cables along the XFEL machine, electrical rf and timing 
signals must be provided, since the high-power rf sources 
of the linac, rf control instrument, such as an in-phase and 
quadrant (IQ) rf control devices, and DAQ system, such 
as a X-ray charge coupled device (CCD) in an experiment, 
are electronic equipment. For these reasons, unified rf and 
timing transmission instruments using laser and electrical 
technology must be employed for the XFEL. 
There are two key methods being commonly employed 

for signal transmission using optical fiber. These methods 
should be adaptable to the unified instruments. One is 
sinusoidal wave transmission; the other is comb-pulse 
train transmission. When an rf distribution and timing 
system for synchronization in the XFEL is designed, we 
must compare the advantages or disadvantages of both 
methods. The decision for selecting one method from 
among them is strongly dependent on the features of an 
accelerator system and an experiment system in 
accordance with the scientific aim. Furthermore, the most 
important factor for the selection is how a high signal-to-
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signal source uses the frequency-dividing method, a 
power supply with a very low-noise of -150 dBV/√Hz, 
and the above-mentioned PLL connection. The noise 
levels at individual frequencies proportionally decrease 
with the frequency-dividing ratio of the divider. 

Optical Comb Generator 
 The OPT-COMB [10] for SACLA was developed. It 

generates an optical bomb pulse train with a pulse width 
of 1ps (FWHM) and a repetition of 5712 MHz, when the 
5712 MHz signal generated with the MOSC is added to 
the LN crystal. Figures 13 -a and b show the output 
waveform of the optical pulse train and its frequency 
spectrum envelope. The comparison between the noise 
spectra of the comb generator output after 500 m single-
mode optical fiber transmission and of the master 
oscillator output is shown in Fig. 14. There is an increase 
in the noise over a frequency range of 1MHz. 

Figure 13: Output wave form of the comb generator (about 
1 ps pulse width, 175 ps period) and its spectrum envelope.

Figure 14: Comparison between the noise spectra of the 
comb generator output after 500 m optical fiber
transmission and of the master oscillator output. 

Optical Sinusoidal Wave Transmitter 
The OPT-TX was designed and fabricated for the 

SACLA rf and timing distribution. This transmitter 
comprises 1500 nm band DFB laser diodes with different 
wavelengths, which correspond to 238, 476, 1428, 2856 
and 5712 MHz rf signals generated with the MOSC and 
Mach-Zehnder interferometers, a called LN-modulator 
using a crystal of LiNbO3, [27], as E/O rf converters, a 
WDM optical power combiner to merge the different 
wavelength signals, an EDFA and an optical power 
divider. This transmitter also has a trigger pulse 
transmission function using the phase-switch keying 
(PSK) technique, which modulates a 5712 MHz carrier 
signal by a pulse-shaped phase change of +/-180 deg. on 

both the rise and fall sides of the pulse edges, respectively. 
This modulation is achieved with an IQ modulator. 

 

Figure 15: Water-cooled and temperature-stabilized 
optical-fiber duct. 

Figure 16: Water-cooled and temperature-stabilized 
optical-fiber duct and a 5712 MHz phase-shift by the duct 
temperature change. 

Optical-fiber Cable with Optical Length Control 
The PSOF usually has a temperature coefficient of 2 

ppm/K in optical length. Therefore, the optical length of 
the fiber changes 1.6 m/K for a length of 800 m. This 
value corresponds to a phase shift of about 8 deg./K and 4 
ps/K at 5712 MHz. This fact is not acceptable to employ 
this method for SACLA. The methods used to reduce the 
thermal optical length change around the PSOF are 
indispensable. One is temperature control around the 
PSOF cable; the other is optical length control for the 
PSOF. 
Temperature stabilization around optical fiber cables: In 

order to moderate a change in the ambient temperature 
around the PSOF cable, the cables are installed in a 
dedicated and temperature-stabilized duct, as shown in 
Fig. 15. This water-cooled and temperature stabilized duct 
comprises double rectangular steel ducts; also, four 
copper water pipes are tightly attached on both sides of 
the outer surface of the inner duct with a thermal 
compound material. This inner duct makes an isothermal 
distribution plane. The PSOF cables are installed between 
cushions in the inner duct to reduce any vibration caused 
by the cooling water. Figure 16 shows the measured 
temperature changes of the duct inside in the klystron 
gallery of SACLA. Then, the temperature of the gallery 
was about 26.0 ± 1 K (p-p), but the PSOF temperature 
was controlled to within 26.0 ± 0.08 K (p-p) by 
temperature-stabilized cooling water within a temperature 
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of 26.0 ± 0.1 K (p-p). The temperature change in the duct 
is moderated to be about one fifth lower than that of the 
gallery. 
Optical fiber length control using Michelson 

interferometer: To obtain further precise temporal 
resolution, we developed a Michelson interferometer to 
observe the optical length of the fiber cable for SACLA. 
An optical length change is reduced by feedback-control 
using data measured by the interferometer. A block 
diagram of the fiber optical length control system is 
shown in Fig. 6. The system comprises a DFB laser diode 
locked to an acetylene absorption line, a fiber stretcher to 
change the fiber optical length, an acoustic optical 
modulator (AOM) module placed at the start point of the 
optical fber to modulate the laser light by a 55 MHz 
signal for rf phase detection (optical length detection), a 
Faraday rotation mirror at the fiber end point to reflect 
laser light and to distinguish backward and forward lasers, 
a phase detector to measure the fiber displacement and a 
displacement feedback control circuit to drive the fiber 
stretcher. The displacement signal outputted from the 
feedback control circuit is proportional to the filber 
optical length change. The data of the optical fiber length 
control are shown in Fig. 17 [10].  They were taken by 
using the existing 2 km PSOF along the circumference of 
the SPring-8 ring accelerator. It is apparent that the 
optical length control for the fiber worked well, and 
decreased the displacement to less than several micron-
meters of its optical length in a frequency range of under 
50 Hz.  This system is unfortunately not installed in 
SACLA, because of a budget shortage. However, by 
taking into account the performance of the water-cooling 
duct for the optical fiber, the optical fiber length control is 
indispensable. 

Figure 17: Performance of the optical-fiber length control
using the 1 km fiber of SPring-8 ring accelerator. 

Figure 18: Comparison among the noises of the MOSC,
after 400 m signal transmission, and of the IQ-modulator 
output. 

EXAMPLE OF RF AND TIMING 
DISTRIBUTION PERFORMANCE 

RF Amplitude/Phase Stability and Noise 
The performance of the rf and timing distribution system 

for SACLA was verified, when beam commissioning was 
proceeded. Figure 18 shows the noises increased by the 
above-mentioned signal transmission using a 400 m 
optical fiber and also a noise increase at the output of an 
IQ modulator to be connected after the 400 m optical 
signal transmission. The amounts of these noise increases 
are about 10 fs each. The drift of the phase of 5712 MHz 
rf signal transmitted for about 400 m along the SACLA 
klystron gallery by using the above-mentioned optical 
system is shown in Fig. 16. Even through, the PSOF cable 
is installed in the water-cooled and temperature stabilized 
duct, the temperature of which is regulated to within +/- 
0.08, the rf phase drift is 1.5 deg. (P-P) for 3 days. This 
phase drift is consistent with a calculated result using the 
thermal optical length coefficient with 2 ppm/K of the 
PSOF and the temperature variation of the duct.  

Accelerated Beam and Lasing Performance by 
using the Developed Optical rf and Timing 
Distribution System 
The accelerated electron beam performance, such as 

beam energy and temporal stabilities, of the SACLA 
accelerator indirectly shows the performance of the 
above-mentioned rf and timing system. The energy jitter 
and stability for 7 GeV at the accelerator end were 1.4 x 
10-4 in STD of the shot-by-shot data and 1.0 x 10-4 in P-P 
of 100 points moving averages for 6 hours, respectively. 
The shot-by-shot temporal fluctuation of the beam arrival 
times at the accelerator middle position (C-band 
accelerator of a number 07) was about 400 fs in P-P, and 
its drift was 700fs in p-p. This arrival time was observed 
with a cavity-type beam position monitor (BPM, a 4760 
MHz, TM010 mode reference cavity for the BPM), and 
by comparing the phase between the reference rf signal 
and the beam-induced signal at the BPM [10]. The trend 
of the arrival time was unfortunately correlated with the 
optical length drift of the PSOF cable dependent on the 
fiber duct temperature change in the klystron gallery. The 
time jitter of the accelerated electron beam measured by 
an rf deflector system for observing a beam bunch length 
is shown in Fig. 19. The beam time jitter is 22.7 fs in STD. 
We finally obtained continuous lasing at a wavelength of 
0.12 nm with a power of 30 mJ on average for 12 hours 
by using our rf and timing distribution system.  

Comparison Between the Comb Pulse and 
Sinusoidal Wave Transmission 
We can compare the SSB noise performances of both the 

optical comb-pulse signal transmission and the sinusoidal 
optical signal transmission at 5712 MHz, as shown in  
Figs. 14 and 18. The noise level of the comb-pulse 
transmission is slightly larger than that of the sinusoidal-
wave transmission in the frequency region over 100 kHz. 
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This noise increase is not very large, but is still not easily 
made negligible. Unfortunately, the measurement 
apparatus noise level in the case of Fig. 14 is slightly 
larger than that of Fig. 18. We cannot directly and easily 
compare both of the data, because of the instrument noise.  

Figure 19: Beam time jitter observed by the rf deflector. 
The beam time jitter is 22.7 fs in STD. 

SUMMARY 
The tempral accuracy and stability of the state-of-the-art 

rf and timing distribution system, which is supported by 
combined technology of a laser and a microwave, have 
already achieved up to a femto-second region. This 
technology of the system strongly supports the lasing of 
an XFEL, like LCLS and SACLA. The temporal 
stabilities of an accelerated electron beam and X-ray 
lasing indirectly prove the ultra-stable temporal stability 
of our develoed rf and timing distribution system for the 
XFEL. On the other hand, the noise level of sinusoidal 
siganl transimission is samller than that of comb-pulse 
signal transmission in the case of SACLA. Empolying the 
sinusoidal siganal transmission for SACLA could be more 
advategious than the comb-pulse transmission. 
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