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Abstract 

Grating with Bragg reflectors for the Smith-Purcell 
free-electron laser is proposed to improve the reflection 
coefficient, resulting in enhancing the interaction of the 
surface wave with the electron beam and, consequently, 
relax the requirements to the electron beam. With the help 
of particle-in-cell simulations, it has been shown that, the 
usage of Bragg reflectors may improve the growth rate, 
shorten the time for the device to reach saturation and 
lower the start current for the operation of a Smith-Purcell 
free-electron laser. 

INTRODUCTION 
At the present time, terahertz sources are actively being 

developed for a variety of applications in biophysics, 
medical and industrial imaging, nanostructures, and 
materials science. As a promising alternative in 
development of a compact, tunable and powerful terahertz 
source, the Smith-Purcell free-electron laser has attracted 
many attentions in recent years [1-18].  

It is well known that the SP radiation is emitted 
when an electron passes near the surface of a periodic 
metallic grating. The wavelength λ of the radiation 
observed at the angle θ measured from the direction 
of electron beam is given by  
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where L is the grating period, βc the electron velocity, 

c the speed of light, and n the order of the reflection 

from the grating. The incoherent SP radiation has been 
analyzed in many ways, using diffraction theory, 
integral equation method, and induced surface current 
model. The superradiant Smith-Purcell radiation is 
regarded as the result of electron beam bunching, 
induced by the strong interaction of the continuous 
beam with the evanescent wave propagating along the 
grating surface. Several theories have been proposed to 
explain the superradiant phenomenon and to calculate 
the growth rate and start current of the radiation [6,7], 

and some schemes for improving the growth rate and 
output the radiation are also proposed[12,18].  

In this paper, we report the analysis on the Smith-
Purcell free-electron laser with using Bragg reflectors.  

BASIC THEORY 
Typically, Smith-Purcell free-electron laser devices are 

similar to backward-wave oscillators and travelling-wave 
tubes, but they use an open grating as the slow-wave 
structure. It has been shown that the beam interacts with a 
surface mode of the grating that lies at a wavelength 
longer than the Smith-Purcell radiation [14-19]. The 
electron beam interacts with the surface wave for which 
the phase velocity matches the electron velocity, thus, 
when the beam current exceeds the so-called start current, 
strong interaction occurs and the originally continuous 
electron beam could be periodically bunched by the 
surface wave and resulting in inducing super-radiant 
Smith-Purcell radiation[11,12]. However, the super-
radiant Smith-Purcell radiation is hard to be observed in 
experiment because of the stringent requirements to the 
electron beam [7,9].  

Based on the fact that the surface wave cannot radiate 
and it is partially reflected and partially diffracted at the 
ends of the grating [11,12], in this paper, a scheme of 
grating with Bragg reflectors is proposed to improve the 
reflection coefficient. By such a way, the beam-wave 
interaction can be enhanced, and then the growth rate 
could also be improved and, consequently, the start 
current is expected to be reduced. The Bragg reflector is 
also formed by open grating, thus, such a configuration 
adds no impact on the super-radiant Smith-Purcell 
emission, which emits over the grating at a certain angle.  
   The surface mode for an open grating as shown in Fig.1, 
where the grating system is assumed to be perfect 
conductor, has been well analyzed [19]. According to 
Flouqet’s theorem the electric field for the TM wave can 
be expanded as space harmonics
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grating period and 
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equation has been derived out by H. L. Andrews and C. A. 
Brau [19], and its passive form is written as 
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Figure 1: Schematic of an ordinary grating for Smith-
Purcell free-electron  laser. 
 
where A

 
the width of the groove, and H the depth. With 

the parameters chosen as L =173 μm, A =62 μm and 
H =100μm, by numerically solving the equation, the 
roots give the dispersion relation )(k  as shown in Fig.2. 

The beam line of 35 keV is also plotted, and its 
intersection with the dispersion curve implies the 
operation point of the free-electron laser. As is shown, the 
intersection occurs at the part where the surface wave 
travels with a positive phase velocity equal to the electron 
velocity, the group velocity (for the problem of this paper 
it is equal to energy velocity) is negative, so, the device is 
in the manner of a backward-wave oscillator. In the 
following we confine our attention to the backward-wave 
operation. We know that a surface mode consists of a 
superposition of an infinite number (  ..p ) of 

spatial harmonics, and those with positive pk  carrying 

energy flows forward, while those with negative pk  

flows backward. For the backward-wave part in Fig.2, the 
total energy-flow is backward and this leads to the 
negative group velocity. At the central point 2kL =0.5, 

the group velocity is zero, which means the forward 
energy-flow is same to the backward one. From  

 
Figure 2: Dispersion relation of the surface wave of a 
grating. The beam line is for 35 keV electrons. The 
operation point of the Smith-Purcell free-electron laser is 
the intersection of the dispersion curve and the beam line. 
 
the dispersion equation, we can calculate relative 
amplitudes of the first few spatial harmonics (for 
convenience they are normalized to the zero harmonic of 
the field in groove. See Eq.18 in Ref[19]), and then 
calculate the average power carried by each harmonic 
through the calculation of Poynting vector 

z
p

y
p

x
p HES

2

1
 . The results are as shown in Fig. 3, 

where we plot the absolute  

 
Figure 3: Poynting vectors of the first few harmonics. 

Note that xS 1
 
and xS 2 are actually with negative value, 

meaning that energy flows backward. 
 

value of normalized x
pS

 
for convenient comparison, and 

note that xS 1
 
and xS 2 are actually with negative value, 

meaning that energy flows backward. As is shown in 
Fig.3, in the forward-wave region ( 5.02 kL ) the 

zero harmonic carries most of the energy, while in the 
backward-wave region ( 5.02 kL ) the -1th 

harmonic is dominant. Note that energy exchanges 
between electron beam and entire harmonics though the 
beam only synchronize with the zero harmonic.  
   We are trying to use Bragg gratings as reflectors 
connected at one end or two ends of the main grating as 
shown in Fig. 4. For the case of operation point being at 
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the backward-wave region, the Bragg reflector may 
correspond to the zero harmonic or the -1th harmonic. 
The reflected zero (or -1th) harmonic increases the entire 
field when the phase is well matched, and certainly this 
leads to the increase of the field of zero harmonic and, 
consequently, the beam-wave interaction would be 
enhanced. We can tune the lengths of 1g  and 2g  as 

shown in Fig.4 to optimize the phase-matching. In the 
following, we demonstrate this scheme by a two-
dimensional particle-in-cell simulation. 

 
Figure 4: Schematic of Smith-Purcell free-electron laser 
with Bragg reflectors. 
 

SIMULATION 
The simulations are carried out with using CHIPIC code 

[20], which is a finite-difference, time-domain code 
designed to simulate plasma physics processes. The 
grating system is assumed to be perfect conductor as 
shown in Fig.5, and it has uniform rectangular grooves 
along the z direction, with parameters mentioned above. 
The main grating is assumed to have 60.5 periods. A 
sheet electron beam with the thickness of 24 μm 
propagates along the x direction, and its bottom is over 
the grating surface by height of 34 μm. It is a perfect 
beam produced from a small cathode located at the left 
boundary of the simulation area. The beam wave 
interaction and radiation propagation occur in the vacuum 
box, which is enclosed with absorber regions. Since it is a 

 
           Figure 5: Schematic of simulation box. 
 
 two-dimensional simulation, it is assumed that all fields 
and currents are independent of the z direction. We have 
simulated the reflection effect of a surface wave by the 
end of grating and by Bragg grating with using the 
method mentioned in Ref. [21]. It has been shown that for 
the frequency of our interest the reflection coefficient can 
achieve about 0.75 when a Bragg grating with 2.5 
periods is connected. Hereafter, we adopt 2.5 periods for 
the Bragg grating used in the following simulations. 
   We firstly determine the wavelength of the zero and -
1th order harmonic through simulating the main grating 
alone, and with using 35 keV electron beam it turns out to 

be 0 242 μm and 1 600 μm, respectively. Thus, 

the period of the corresponding Bragg grating should be 

0
Bd 20 121 μm and 1

Bd  21 300 μm, 

respectively. We simplify choose the groove width as half 
the period, and groove depth 100μm same as that of the 
main grating. The frequency of the surface wave is 427 
GHz, which is a little bit lower than that of the analytical 
calculation, due to the decrease of the electron’s energy 
induced by the effect of space charge [12]. The procedure 
of optimization is as follows: for the case of reflecting 
zero harmonic, we firstly set the Bragg grating at the 
downstream end only, and tune 2g  to find the biggest 

growth rate through observing the evolution of the z-
component magnetic field. The observation point is set 
17.3 μm above the grating surface at the centre of the 
main grating; Next, we set another Bragg grating at the 
upstream end and optimize 1g . For the case of reflecting 

-1th harmonic, we have to set the Bragg grating at the 
upstream end firstly, because it moves backward 
(negative x direction). The simulation results are shown in 
Fig. 6, where the evolutions of the z-component magnetic 

 
Figure 6: Evolution of the amplitude of z-component 

magnetic field. Bragg grating with period length 0
Bd  are 

used at both ends, and 01 g , 02 g . The 

corresponding elongated grating is with period number of 
64.5. 
 
 fields are given. For comparison, the results of 
corresponding elongated grating (without Bragg gratings 
but with the same overall length) are also plotted. In 
Fig.6 , results of Bragg grating (used at both ends) with 

period length of 0
Bd  are demonstrated. It is found that for 

the same current density ( 27 /108.1 mA ), oscillation 
starts earlier when Bragg reflectors are used, and 
saturation occurs sooner.  It is also found that the growth 

rate is 19105.2)Im(  s  when Bragg reflectors 

are used and 18102.8)Im(  s  when they are not. 

Bragg reflectors increase the growth rate by a factor of 3.  
By varying the current density it is found that the start 

current density is 27 /104.1 mA  when Bragg 

reflectors are used and 27 /106.1 mA  when they are 
not used. In Fig.7, we show the cases of using Bragg 
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grating (period length 1
Bd  ) upstream alone, both ends 

and corresponding elongated gratings. It is shown that, 
when Bragg reflector is used upstream alone, the growth 

rate is almost same ( 19103.2)Im(  s ) to the 

corresponding elongated grating, but, the oscillation starts 
earlier when it is used. For the case of using Bragg 
grating at both ends, by the parameters used in this paper, 
growth rate and oscillation-starting time are close to those 
of corresponding elongated grating.  

In Fig. 6 and 7, the magnetic field observed at the 
center of grating and near the grating surface is total field 
involving all space harmonics. The saturated field is 
greater with Bragg reflectors, because the corresponding 
harmonic is reflected back into the grating with higher 
reflectivity and increase the total field.  

 
Figure 7: Evolution of the amplitude of z-component 

magnetic field. Bragg grating with period length 1
Bd  is 

used upstream alone ( 1
1 5.0  Bdg ), and both ends  

( 1
1 5.0  Bdg , 02 g ).The corresponding elongated 

gratings are with 65.5 and 70.5 periods, respectively. 

CONCLUSION 
We proposed a grating system with using Bragg 

reflector to improve the Smith-Purcell free-electron laser. 
With theoretical analysis and particle-in-cell simulation, 
we demonstrated that the interaction of electron beam and 
wave could be enhanced, and then the growth rate was 
possibly to be improved.  
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