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Figure 2: (a) Dispersion for a 28 µm core diameter HC-
PCF filled with different pressure of argon from 0 to 10 
bar by step of 2 bar. (b) The zero dispersion wavelength 
plotted against Ar-pressure for fibres with different core 
diameters.  

The process can be explained by looking numerically 
solving the generalised nonlinear Schrödinger equation to 
model the propagation of the input pulse along the fibre: 
 

A
z

 i 1
i
 0


t







A 2 A  

           (1) 

 
where A is the complex envelope of the optical field, t is 
the time in a reference frame moving at the group velocity 
v of the input pulse,  is the wavelength-dependent loss,  

is the axial wavevector and  is the inverse Fourier 
transform. The nonlinear contribution of the gas is 
  n2 / (cAeff ), where n2 is the nonlinear refractive 

index, c the speed of light in vacuum and Aeff  the 
effective area of the core. In our case, where the fibre has 
a 28 µm core diameter,  ~ 7.7 107 W1m1  at 5 bar of 

Argon.  Propagation of a 1.5 µJ, 30 fs pulse at 800 nm in 
this fibre filled with 5 bar of argon is presented in Fig. 3.  
 
Initially the pulse undergoes soliton-like compression (in 
the time domain) due to self-phase modulation induced by 
the Kerr-nonlinearity and the very low anomalous 
dispersion of the waveguide (−0.4 ps2/km at the pump 
wavelength). The shock derivative term causes the 
induced spectrum to extend asymmetrically into the UV 
region. In the second stage the compressed pulse radiates 
into resonant dispersive waves in the UV region. The 
radiation quickly separates from the residual pump due to 
strong group velocity walk-off (Fig. 3d). From the 
simulations, we can estimate that the UV pulse duration 

after its generation is ~10 fs. Using frequency resolved 
optical gating we also measured the residual pump 
duration after emission of UV light. Taking account of the 
normal dispersion introduced by the glass window at the 
output cell, we estimated the pulse to be 9 fs.  

 

 

Figure 3: Time and spectral evolution of a 1.5 µJ 30 fs 
Gaussian pulse propagating inside 20.5 cm of kagomé-
fibre filled with 5 bar of argon. Dispersive wave (d, e) is 
generated after ~ 5 cm of fibre (c).  

In the reference frame of the soliton the emission of a 
dispersive wave from a soliton relies on the phase-
matching condition: 

 
disp.( )  sol.( ) (2) 

 
Where the wavevector of the soliton is βsol = γP0/2, P0 
being the peak power of the soliton at the point of 
emission [10]. Since the dispersion of the filled-fibre 
depends strongly on the gas pressure, the phase-matching 
condition and consequently the wavelength of the 
generated UV are tunable by varying pressure. We plot in 
Fig. 4 the phase-matching curve (Eq. 2) for a fibre with a 
28 µm core diameter, for gas-pressures from 2 bar to 
10 bar in steps of 2 bar. This clearly shows the range of 
wavelengths accessible via this process.  
 

 

 

Figure 4: Phase-matching conditions between dispersive 
waves and a soliton created by a 1.5 µJ 30 fs pulse 
launched into a fibre filled with argon at different 
pressure ranging from 2 to 10 bar in steps of 2 bar.  

  
To explore the potential of this new source for seeding a 

FEL, we used the Genesis code [11] with parameters 
corresponding to SPARC-FEL. Table 1 presents the 
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different parameters used in our simulations, for seed 
pulses at 150 and 300 nm.  

  
Table 1: parameters used for Genesis simulation in the 

case of seeding of SPARC-FEL 
E-beam    
 Energy 170 MeV 
 Current 50 A 
 Emittance 1.5 .mm.rad 
 Energy spread 2×10-4 
Undulator   
 Period 28 mm 
 Nb. periods/section 77 
 Nb. of sections 6 
 Deflexion parameter K = 0 to 3.4 
Seeding pulse   
 Wavelength 150 nm 300 nm 
 Energy/pulse <10 nJ <80 nJ 
 Pulse duration 10 fs 15 fs 
 Peak Power 1 MW 5 MW 

 
 

Fig. 5 shows the main results of the GENESIS 
simulations. Seeding at 300 nm with an input seed of 15 
fs (FWHM) duration and 10 kW peak power (see Fig. 5a), 
leads to efficient amplification in the FEL. Indeed, Fig. 5c 
(red-curve) shows exponential growth of the output power 
from 100 kW up to saturation at 10 MW.  As illustrated in 
Fig. 5b, the input seed is amplified but also stretched from 
15 to 200 fs (FWHM) along the undulator, essentially 
because of group velocity walk-off. Seeding at 150 nm 
with a realistic peak power of 100 kW (starting from the 
maximum currently achievable power of 1 MW and 
assuming 10% coupling between the source and the 
electron beam), does not lead to saturation, as shown in 
Fig. 5(c). Indeed, the gain is lower than at 300 nm. 
Saturation can easily be reached at higher gain (for 
instance with a higher current) or higher seeding power 
(see Fig. 5(c)).  

 
In summary, we suggest that a recently developed system 
for the generation of deep-UV light, widely tunable by 
varying the gas-pressure in an argon-filled kagomé-lattice 
HC-PCF, can be used as a seed for FELs. The UV is 
always generated in the fundamental mode and 
conversion efficiencies of up to 8% have been measured. 
The set-up is extremely compact and provides access to 
continuously-tunable seed light from 150 to 320 nm. 
Simulations on SPARC-FEL show amplification over this 
whole spectral range, and saturation at 300 nm with 
conservative values of seeding power.  

 
Figure 5: Simulations using the Genesis code with 
parameters given in Table 1.   
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