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Abstract

We show that using the second and third harmonics of

the laser frequency one can substantially increase the beam

bunching factor in the echo-enabled harmonic generation

(EEHG): for a cold beam one can obtain the bunching fac-

tor ≈ 0.4 in the range of harmonic numbers 100-200. We

also discuss an option of using nonlinear dispersive ele-

ments to increase the bunching factor.

INTRODUCTION

Echo-enabled harmonic generation (EEHG) for FEL

seeding uses two undulator-modulators and two chicanes to

introduce a fine structure into the beam longitudinal phase

space which, at the end of the system, transforms into high

harmonic modulation of the beam current [1, 2]. For har-

monics n ≈ 100, in a perfect EEHG setup, it can provide a

bunching factor b in the range b ≈ 0.06−0.08 sufficient for

seeding a soft x-ray FEL.

In this paper we consider two methods that could allow

to increase the bunching factor. The ultimate goal in in-

creasing b would be to achieve a level of modulation com-

parable with the bunching at saturation in an FEL. This

would lead to elimination of the need of the lasing pro-

cess using instead the coherent radiation of a pre-bunched

beam in the undulator-radiator as a bright source of x-rays.

It would also require a shorter undulator-raduator and relax

some of the beam parameters (e.g., its peak current). Sim-

ulations of bunching factors for LCLS in soft x-ray regime

show that at saturation the bunching factor of the beam is

close to 0.5 [3].

We consider two approaches to the problem. First, we

analyze how much one can gain in the bunching factor

if one uses in both EEHG modulators, in addition to the

fundamental, second and third harmonics of the laser fre-

quency to optimize the modulation energy profile of the

beam. Second, we consider an option of using nonlinear

dispersive elements in the system (with the fundamental

laser harmonic only) to increase the bunching factor.

ANALYSIS

In what follows we will use notations defined in [2]:

A1 = ΔE1/σE , B1 = R(1)

56
kσE/E0, A2 = ΔE2/σE , B2 =

R(2)

56
kσE/E0 where ΔE1 and ΔE2 are the amplitudes of the
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energy modulation in the first and second modulators, re-

spectively, R(1)

56
and R(2)

56
are the R56 parameters for the first

and second chicanes, σE the rms energy spread of the in-

coming beam (it is assumed that the beam initially has a

Gaussian energy distribution), E0 the beam energy, and

k = ωL/c with ωL the laser frequency (assumed the same

in both modulators). A general expression for the bunching

factor bn at harmonic n of the laser frequency in the case of

sinusoidal modulation profile (that is generated with only

one laser harmonic) can be found in [2]. From this ex-

pression it follows that the maximal modulation in an op-

timized EEHG system depends only on A1. For n � 1 is

is given by bn = F(A1)n−1/3, where the function F(A1) is

defined in [2]. In the limit A1 � 1, F(A1) ≈ 0.39. In

this limit one finds for 50th, 100th and 200th harmonics:

b50 = 0.11, b100 = 0.084 and b200 = 0.067. Such rela-

tively low bunching factors are due to the fact that in the

final phase space of the beam only a small fraction of the

beam particles contribute to the modulation at harmonic n,

see Fig. 1. To increase the bunching factor we now assume

Figure 1: The EEHG phase space at the exit from the sys-

tem. The horizontal axis is the coordinate z in the beam

normalized by the laser wavelength, and the vertical axis is

the energy deviation normalized by the initial rms energy

spread in the beam. The parameters of the chicanes were

optimized for n = 100, with A1 = 5, A2 = 3. The bunching

factor at 100 harmonic is 0.08. Only particles that form a

pattern of vertical stripes contribute to b100.

that one has a capability to vary the energy modulation pro-

files in both modulators (and is not limited to the function

sin(kz) as was assumed in [1, 2]), that is

ΔE(z) = ΔE1C1(kz) in first modulator,

ΔE(z) = −ΔE2C2(kz) in second modulator, (1)
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where C1 and C2 are dimensionless periodic functions with

the period of 2π and ΔE1, and ΔE2 are the amplitudes of

the modulation (the minus sign in the second equation is

chosen for convenience). Of course, an unconstrained free-

dom in the choice of C1 and C2 can dramatically increase

the bunching factor. For example, it is easy to show that

a “sawtooth” profile for both C1 and C2 (that is a linear

slope periodically interrupted by discontinuous jumps), in

the limit of large A1 and A2, gives 100% bunching at all

harmonics [4]! Such profile, however, involves an infinite

number of laser harmonics, and hence cannot be considered

as a practical one. On the other hand, adding a small num-

ber of harmonics of the laser frequency might be feasible

if the laser beam energy in higher harmonics is reasonably

small.

THEORY
To get an insight into the optimal choice of functions

C1 and C2, we first develop an analytical model of EEHG

with arbitrary modulation profiles in which we express the

bunching factor bn in terms of C1 and C2 and other beam

parameters. For simplicity, we consider the case of equal

fundamental laser frequencies in both modulators. Fol-

lowing the derivation of bn in Appendix A of [2] one can

express the bunching factor as an integral over the initial

beam distribution function (Eqs. (A5) and (A6) in [2]) . We

found it more convenient however to express the bunching

factor as an integral of the distribution function after the

first chicane. It has the following form (cf. (A5) in [2])

bn =
1

2π

∣∣∣∣∣∣
∫ ∞

−∞
dp′
∫ 2π

0

dζ′ f (p′, ζ′)〈e−inζ′′(ζ′,p′)〉
∣∣∣∣∣∣ ,

where p = (E − E0)/σE and ζ = kz, p′ and ζ′ refer to the

position after the first chicane, ζ′′ is the coordinate ζ after

the second chicane,

ζ′′ = ζ′ + B2(p′ + A2C2(ζ′)), (2)

and f (p′, ζ′) is the distribution function after the first chi-

cane given by

f (p′, ζ′) = f0(p′ − A1C1(ζ′ − B1 p′)), (3)

with f0(p) = (2π)−1/2e−p2/2 the initial distribution function

of the beam.

To further simplify analysis, we consider the case of a

cold beam, f (p) = δ(p):

bn =
1

2π

∣∣∣∣∣
∫ ∞

−∞
dp′
∫ 2π

0

dζ′ δ(p′ − A1C1(ζ′ − B1 p′))

× e−in(ζ′+B2(p′+A2C2(ζ′)))
∣∣∣∣∣ . (4)

Using the representaion δ(x) = (2π)−1
∫ ∞
−∞ eiκxdκ we obtain

bn =
1

(2π)2

∣∣∣∣∣
∫ ∞

−∞
dp′dκ

∫ 2π

0

dζ′ eiκ(p′−A1C1(ζ′−B1 p′))

× e−in(ζ′+B2(p′+A2C2(ζ′)))
∣∣∣∣∣ . (5)

The function e−iκA1C1(ζ′−B1 p′) is a periodic function of ζ′ −
B1 p′ and can be expanded in Fourier series

e−iκA1C1(ζ′−B1 p′) =

∞∑

m=−∞
Rm(κA1)eim(ζ′−B1 p′), (6)

with Rm given by

Rm(t) =
1

2π

∫ 2π

0

dxe−i(mx+tC1(x)). (7)

Substituting this expansion into (5) and integrating over p′
and κ we obtain

bn =

∣∣∣∣∣
∞∑

m=−∞
Rm(A1(mB1 + nB2))S n,m(A2B2)

∣∣∣∣∣ (8)

with

S n,m(t) =
1

2π

∫ 2π

0

dζ eimζ−in(ζ−tC2(ζ)). (9)

Analysis shows that for a given n in an optimized sum (8)

the dominant contribution comes from one term, either

with m = 1 or m = −1 [2]. In the m = 1 case the chicanes

have opposite signs of R56, and for m = −1 R(1)

56
and R(2)

56

have the same sign. In what follows we assume m = −1.

With only one term selected in (8) the optimization strat-

egy consists in choosing the function C1 in such a way as

to maximize R−1 and then choosing C2 to maximize S n,−1

in (9).

In the next section we will develop an optimization pro-

cedure for bn considering the limit n � 1.

OPTIMIZATION
Mentioned previously the “sawtooth” profile corre-

sponds to the choice C1(x) = ax and C2(x) = bx for

0 < x ≤ 2π with a and b constant. Then Rm is easily

integrated and its maximal value is equal to 1 achievable at

A1(mB1 + nB2) = m/a. Similarly, the integral S n,m can be

calculated and again its maximal value is equal to 1 achiev-

able at nB2A2 = −m/b. Hence, we conclude that in this

limit the bunching factor can be optimized to achieve its

maximal value of 1 [4].

We now consider optimization that involves two or three

laser harmonics. As a reference case, let us start with the

sinusoidal modulation C1(ζ) = C2(ζ) = sin(ζ). In this case

R−1 reduces to the Bessel function J1(A1(nB2 − B1)) with

max |R−1| = 0.58 at A1(nB2−B1) = 1.84. Eq. (9) now takes

the form

S n,−1(t) =
1

2π

∫ 2π

0

dζ e−i((n+1)ζ−nt sin(ζ)). (10)

In the limit of large n, the integrand is a rapidly oscillat-

ing function of ζ. It is maximized if t is chosen in such a

way that the linear term in the argument of the exponential

(n + 1)ζ − nt sin(ζ) almost cancels in the vicinity of point

MOPB19 Proceedings of FEL2011, Shanghai, China

ISBN 978-3-95450-117-5

46C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s/

C
C

B
Y

3.
0

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

FEL Theory and New Concepts



ζ = 0, that is t = (n + 1)/n ≈ 1 (a more thorough con-

sideration shows that the optimal linear term should have

a coefficient of order of n1/3). In this case the main con-

tribution to the integral comes from the region near ζ = 0

where e−i((n+1)ζ−nt sin(ζ)) ≈ e−i(n+1−nt)ζ−intζ3/6 and the integral

reduces to the Airy function with max |S n,−1| ≈ 0.67n−1/3.

This gives for the maximal value of the bunching factor

max |R−1|max |S n,−1| = 0.39/n1/3, as mentioned in the In-

troduction.

Let us now consider the case of two harmonics in the

first modulator, C1(ζ) = sin(ζ) + α sin(2ζ). Numerical

maximization of the integral (7) gives max |R−1| = 0.74

at α = 0.45. For three harmonics in the first modula-

tor, C1(ζ) = sin(ζ) + α sin(2ζ) + β sin(3ζ), we find nu-

merically the optimal values α = −0.48, β = 0.29 with

max |R−1| = 0.81. In both cases we find that in the opti-

mum A1(nB2 − B1) ≈ 2. Plot of the optimized modulation

profile for three harmonics is shown in Fig. 2.

-3 -2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

kz

�
E

(z
)

Figure 2: Plot of the optimized modulation profile (red

line). For reference, the blue thin line shows the function

sin(x).

Note that in the region −2.4 < kz < 2.4 the optimized

profile looks like a rough approximation to the “sawtooth”

slope. This is not surprising because the optimal values of

α and β are close to those obtained by truncation of the

Fouries expansion of the “sawtooth”: sin(x) − 1
2

sin(2x) +
1
3

sin(3x).

We will now turn to optimization of function S n,−1. As

above, we consider two cases: one with the first and the

second harmonics, C2(ζ) = sin(ζ)+ a sin(2ζ), and the other

with three harmonics in the modulation profile, C2(ζ) =
sin(ζ) + a sin(2ζ) + b sin(3ζ). From analysis similar to that

at the beginning of this section we expect that for two har-

monics the optimized asymptotic dependence in the limit

of large n of S n,−1 versus n is n−1/5, and for the three har-

monics S n,−1 ∝ n−1/7, that is the bunching factor will have a

slower decay with n than in the case of the sinusoidal mod-

ulation. The results of a direct numerical optimization in

both cases (as well as the reference case of one harmonic

C2(ζ) = sin(ζ)) are shown in Fig. 3.

As expected, adding more harmonics increases the max-

imized value of S n,−1 for a given n, and hence the bunching

factor. Note also that the numerically found powers in the

0.67n-1/3

0.8n-1/5.4

0.86n-1/8
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Figure 3: Maximized values of the function S n,−1 versus

harmonic number n (red dots). The lower set of points cor-

responds to C2(ζ) = sin(ζ), the middle one is for the case

of two harmonics, and the upper one is for the case of 3

harmonics in the modulation profile. Blue lines show fitted

analytical approximations indicated near each line.

asymptotic dependence S n,−1 ∝ n−1/p for 2 and 3 harmon-

ics show a somewhat slower decay than what follows from

a simple analysis outlined above: p = 5.4 instead p = 5 for

two harmonics, and p = 8 instead of p = 7 for 3 harmonics.

For n = 100 in the case of three harmonics the optimized

modulation profile has a = −0.273 and b = 0.053. The plot

of function C2(ζ) in this case (together with the reference

sin(ζ)) is shown in Fig. 4. Note almost a perfect linear slope

-3 -2 -1 0 1 2 3
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1.0
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Figure 4: Plot of sin(ζ)− 0.273 sin(2ζ)+ 0.053 sin(3ζ) (red

line) and sin(ζ) (blue line).

for −1.5 < ζ < 1.5.

The combined effect of optimization of both factors R−1

and S n,−1 gives the optimized bunching factor, and is shown

in Fig. 5. For n = 100 the three-harmonic case gives four

times larger bunching factor than with one harmonic.

A considerable gain in the magnitude of the beam modu-

lation with the optimized modulation profiles can be under-

stood if one considers the phase space of the beam. Such

a phase space at the end of the system for the 3 harmonics

case is shown in Fig. 6. It was obtain by simulations with

A1 = A2 = 5. The final bunching factor for that case at

100th harmonic is 0.37. Comparing this plot with Fig. 1

Proceedings of FEL2011, Shanghai, China MOPB19

FEL Theory and New Concepts

ISBN 978-3-95450-117-5

47 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s/

C
C

B
Y

3.
0

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)



3 harmonics

2 harmonics

1 harmonic
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b n

Figure 5: The optimized bunching factor as a function of

the harmonic number for 1, 2 and 3 harmonics.

Figure 6: Phase space for an optimized modulation profile.

one can see that much more particles are now involved into

the formation of the bunching pattern.

To implement two- or three-harmonic scheme one needs,

in addition to the fundamental laser frequency ωL, to gen-

erate harmonics at 2ωL and 3ωL. These can be obtained by

frequency doubling or tripling of the main laser beam using

a nonlinear crystal. Note that one has to implement a phase

control of all harmonics involved in the modulation in or-

der to achieve profiles of the modulation shown in Figs. 2

and 4. One also needs undulator-modulators resonant with

the beam at the second an third harmonics. Instead of us-

ing three separate undulators, it might be advantageous to

modulate the beam in one undulator which is tuned at the

fundamental laser frequency. Such an undulator is capa-

ble to couple the beam with the fundamental and third har-

monic propagating along the undulator axis, and also the

second harmonic propagating at a small angle to the axis.

One can also use an undulator with a composite magnetic

field which incorporates all three harmonics of the funda-

mental undulator period.

NONLINEAR DISPERSION

While using higher laser harmonics holds a promise of

considerable increase of the bunching factor, it also results

in a more complicated seeding device. As another approach

to the problem we considered maximization of the EEHG

bunching using nonlinear dispersive elements in the sys-

tem.

Specifically, assuming now a sinusoidal energy modu-

lation, we also assumed that the strength of the disper-

sive elements R56 is a nonlinear function of δ (δ = (E −
E0)/E0). We then approximate R56(δ) by its Taylor expan-

sion R56(δ) ≈ R̄56(1 + aδ′2 + bδ′4) (analysis shows that odd

powers of δ do not contribute to the increase of the bunch-

ing, and are dropped in the Taylor series). This gives the

following transformation for one modulator-chicane stage:

δ′ = δ + ΔE sin kLz

z′ = z + δ′R̄56(1 + aδ′2 + bδ′4). (11)

Assuming a cold beam and using numerical optimization

we found that a nonlinear chicane after the first undulator

increases the factor R−1 from 0.58 to 0.62 with optimal val-

ues a = −0.6 and b = 0. A nonlinear chicane after the

second undulator increases S m,−1 from 0.14 to 0.37, with

optimal values a = 0 and b = 0.34. Combined, this leads

to an increase of b100 from 8.4% to 22%.

CONCLUSIONS
In this paper we considered optimization of the echo-

enable harmonic generation by introducing higher (2nd and

3d) harmonics into the energy modulation profile of the

beam. With optimal profiles, for a cold beam, this would

result in the bunching factor at 100th harmonic b100 ≈ 0.4.

In principle, energy modulation in this scheme can be im-

plemented in a single undulator tuned at the fundamental

wavelength. We emphasize that high enough bunching fac-

tors can eliminate the need for the FEL lasing and can lead

to a shorter undulator-radiator and different requirements

for the beam parameters.

We also showed that the bunching can be increased by

using nonlinear dispersive elements (and a standard sin kz
modulation profile).
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